Защита от перенапряжения

Импульсный преобразователь. Режим повторных включений ИИП

Есть две категории любых импульсных преобразователей напряжения:
С трансформатором
С накопительным дросселем
Преобразователь любой из этих двух категорий может быть как понижающим, так и повышающим, в устройствах с накопительным дросселем это зависит от схемы включения, в устройствах с трансформатором от коэффициента трансформации.
Импульсные преобразователи напряжения с накопительным дросселем
На выходе таких схем всегда будет или постоянное или пульсирующее напряжение.
Переменное напряжение на их выходе не получить.


Сигнал который необходимо подавать в точку А1 по отношению к общему проводу:


Как работают импульсные преобразователи с накопительным дросселем?
Рассмотрим на примере повышающего преобразователя.
Накопительный дроссель L1 подключен так, что при открывании транзистора T1 через них начинает протекать ток от источника "+ПИТ", при этом ток возрастает в дросселе не мгновенно, так как энергия запасается в магнитном поле дросселя.
После того как транзистор T1 закрывается, запасённой в дросселе энергии необходимо высвободится, это следует из физики явлений происходящих в дросселе, соответственно единственный путь этой энергии пролегает через источник +ПИТ, диод VD1 и нагрузку подключенную к ВЫХОДу.
При этом максимальное напряжение на выходе зависит только от одного - сопротивления нагрузки.
Если у нас идеальный дроссель и если нагрузка отсутствует, то напряжение на выходе будет бесконечно большим, однако мы имеем дело с далёким от идеала дросселем, по этому без нагрузки напряжение просто будет очень большим, возможно настолько большим что случиться пробой воздуха или диэлектрика между клеммой ВЫХОД и общим проводом, но скорее пробой транзистора.

Если дроссель желает высвобождает всю энергию которую накопил (за вычетом потерь), то как же регулировать напряжение на выходе таких преобразователей?
Очень просто - запасать в дросселе ровно столько энергии, сколько необходимо, что бы создать нужное напряжение на известном сопротивлении нагрузки.
Регулировка запасённой энергии производится длительностью импульсов открывающих транзистор (временем в течении которого открыт транзистор).

В понижающем преобразователе в дросселе происходят точно те же процессы, однако в этом случае при открывании транзистора дроссель не даёт напряжению на выходе увеличиться мгновенно, а после его закрывания, высвобождая запасённую энергию с одной стороны через диод VD1 а с другой через нагрузку подключенную к ВЫХОДу поддерживает напряжение на клемме ВЫХОД.
Напряжение на выходе такого преобразователя не может оказаться больше чем напряжение +ПИТ.

Импульсные преобразователи напряжения с трансформаторами
Само преобразование происходит в трансформаторе, при этом не важно на железе он - для низких частот; или на феррите - для высоких от 1кГц до 500 и выше кГц.
Суть процессов всегда одинакова: если в первой обмотке трансформатора 10 витков, а во второй 20 и мы приложим переменное напряжение 10 вольт к первой, то во второй мы получим переменное напряжение той же частоты но 20 вольт и соответственно с 2 раза меньшим током чем течёт в первой обмотке.

То есть задача сводится к получению переменного напряжения, которое необходимо приложить к первичной обмотке, от источника постоянного тока питающего преобразователь.

Работает следующим образом:
когда транзистор T1 открыт, ток течёт через верхнюю половину обмотки - L1.1, затем транзистор T1 закрывается и открывается транзистор T2, ток начинает протекать через нижнюю половину обмотки - L1.2, так как верхняя половина обмотки L1 включена своим концом к +ПИТ а нижняя началом, то магнитное поле в сердечнике трансформатора при открытии T1 течёт в одну сторону, а при открытии T2 в другую, соответственно на вторичной обмотке L2 создаётся переменное напряжение.
L1.1 и L1.1 выполняются как можно более идентичными друг другу.
Преимущества:
Высокая эффективность при работе от низкого напряжения питания (через каждую половину обмотки и транзистор протекает только половина необходимого тока).
Недостатки:
Выбросы напряжения на стоках транзисторов равные удвоенному напряжению питания (например когда T1 открыт, а T2 закрыт, то ток течёт в L1.1 в свою очередь в L1.2 магнитное поле создаёт напряжение равное напряжению на L1.1 которое суммируясь с напряжением источника питания воздействует на закрытый T2).
То есть необходимо выбирать транзисторы на большее допустимое максимальное напряжение.
Применение:
Преобразователи, питающиеся от низкого напряжения (порядка 12 вольт).

Работает следующим образом:
когда транзистор T1 открыт, ток течёт через первичную обмотку трансформатора (L1) заряжая конденсатор C2, затем он закрывается и открывается T2, соответственно теперь ток течёт через L1 в обратном направлении, разряжая C2 и заряжая C1.
Недостатки:
Напряжение подводимое к первичной обмотке трансформатора в два раза ниже напряжения +ПИТ.
Приемущества:
Применение:
Преобразователи, питающиеся от бытовой осветительной сети, сетевые блоки питания (например: блоки питания компьютеров).

Работает следующим образом:
когда транзисторы T1 и T4 открыты, ток течёт через первичную обмотку трансформатора в одном направлении, затем они закрываются и открываются T2 и T3 ток через первичную обмотку начинает течь в обратном направлении.
Недостатки:
Необходимость установки четырёх мощных транзисторов.
Удвоенное падение напряжения на транзисторах (падения напряжения на смежных T1 T4/ T2 T3 транзисторах складываются).
Приемущества:
Полное напряжение питания на первичной обмотке.
Отсутствие выбросов удвоенного напряжения свойственных пуш-пулу.
Применение:
Мощные преобразователи, питающиеся от бытовой осветительной сети, сетевые блоки питания (например: импульсные сварочные "трансформаторы").

Общими проблемами для преобразователей на трансформаторах являются те же проблемы что и преобразователей на базе накопительных дросселей: насыщение сердечника; сопротивление провода из которого выполнены обмотки; работа транзисторов в линейном режиме.

Обратноходовые и прямоходовые импульсные преобразователи

Обратноходовой и прямоходовой импульсный преобразователь напряжения - это "гибриды" преобразователя на базе накопительного дросселя и трансформатора, хотя в сути своей это преобразователь на базе накопительного дросселя и об этом никогда не стоит забывать.
Принцип работы такого преобразователя схож с повышающим преобразователем на накопительном дросселе, с той лишь разницей, что нагрузка включена не непосредственно к дросселю, а к ещё одной обмотке, намотанной на сам дроссель.
Как и в повышающем преобразователе, в случае включения его без нагрузки, его выходное напряжение будет стремиться к максимуму.
Недостатки:
Выбросы напряжения на ключевом транзисторе создающие необходимость применения ключевых транзисторов на напряжение значительно превышающее +ПИТ.
Высокое напряжение на выходе в отсутствии нагрузки.
Преимущества:
Гальваническая развязка цепи питания и цепи нагрузки.
Отсутствие потерь связанных с перемагничиванием сердечника (магнитное поле течёт в сердечнике всегда в одну сторону).

Явления, о которых необходимо помнить при конструировании преобразователей напряжения (и импульсных устройств вообще)
Насыщение сердечника (магнитопровода) - момент когда магнитопроводящий материал сердечника дросселя или трансформатора уже настолько намагничен, что более уже не оказывает влияние на процессы протекающие в дросселе или трансформаторе. При насыщении сердечника индуктивность обмоток расположенных на нём стремительно падает, а ток через первичные обмотки начинает увеличиваться, при этом максимальный ток ограничен только сопротивлением проволоки обмотки, а оно выбирается как можно меньшим, соответственно насыщение как минимум приводит к нагреву и обмоток дросселя и силового транзистора, как максимум к разрушению силового транзистора.

Сопротивление проводов обмоток - вносит в процесс потери, так как препятствует запасанию и высвобождению энергии в магнитном поле, вызывает нагрев провода обмотки дросселя.
Решение: использование провода с минимальным сопротивлением (более толстый провод, провод из материалов обладающих малым удельным сопротивлением).

Работа силовых транзисторов в линейном режиме - в случае если генератор сигналов используемый для управления транзисторами выдаёт не прямоугольные импульсы, а импульсы с медленным нарастанием и спадом напряжения, что может быть если ёмкость затвора силовых транзисторов велика, а драйвер (специальный усилитель) не способен выдавать значительный ток для зарядки этой ёмкости, появляются моменты, когда транзистор находится в линейном режиме, то есть обладает неким сопротивлением отличным от нуля и бесконечно большого, в связи с чем через него течёт ток и на нём выделяется тепло ухудшая КПД преобразователя.

Специфические проблемы преобразователей напряжения с использованием трансформаторов
Впрочем, эти проблемы присущи любым устройствам с мощным двухтактным выходным каскадом.

Сквозной ток
Рассмотрим на примере схемы полумоста - если по какой то причине транзистор T2 откроется ранее чем полностью успел закрыться T1, то возникнет сквозной ток от +ПИТ на общий провод, которые будет протекать через оба транзистора приводя к бесполезному выделению тепла на них.
Решение: создание задержки между тем как снизился до нуля потенциал на входе Г1 (см. схему полумоста) и возрос потенциал на входе Г2.
Такое время задержки называют дедтайм (dead time) и графически это можно проиллюстрировать осциллограммой:


Эффект Миллера
Опять же, рассмотрим на примере полумоста - когда транзистор T1 открывается то к транзистору T2 прикладывается напряжение, которое быстро возрастает (со скоростью открывания T1), так как это напряжение велико, то даже незначительная внутренняя ёмкость между затвором и истоком заряжаясь создаёт значительный потенциал на затворе, который открывает T2, пусть и на короткое время, но создавая сквозной ток, даже при наличии дедтайма.
Решение: применение мощных драйверов транзисторов, способных не только отдавать, но и принимать большие токи.

О чём не следует забывать
Понижающий преобразователь с накопительным дросселем, полумост и мост - схемы, которые не так просты, как кажутся на первый взгляд, прежде всего потому, что исток транзистора в понижающем преобразователе и истоки верхних по схеме транзисторов в мосте и полумосте находятся под напряжением питания.
Как мы знаем, управляющее напряжение на затвор транзистора нужно подавать относительно его истока, для биполярных на базу относительно к эмиттера.
Решения:
Использование гальванически развязанных источников питания цепей затворов (баз):



Генератор G1 вырабатывает противофазные сигналы и формирует дедтайм, U1 и U2 драйверы полевых транзисторов, оптрон гальванически развязывает входную цепь верхнего драйвера с выходом генератора, который питается от другой обмотки трансформатора.

Применение импульсного трансформатора для гальванической развязки цепей затворов (баз):

Гальваническая развязка обеспечивается за счёт введения ещё одного импульсного трансформатора: GDT.

Есть и ещё один метод - "бустреп", но и он вам вряд ли понравится, для получения подробностей смотрите документацию к микросхеме IR2153, в частности метод получения напряжения питания для управления верхним по схемам ключевым транзистором.

Проектируя преобразователь, необходимо учитывать, что это импульсное устройство по проводникам которого текут значительные токи, которые резко изменяются и это устройство в котором создаются сильные магнитные поля - всё это создаёт благоприятную почву для возникновения целой серии помех в широком спектре.
При разводке печатных плат следует стремиться сделать все силовые проводники цепи максимально короткими и прямыми, электролитические конденсаторы шунтировать плёночными или керамическими на ёмкость 0,1 ... 1мкф в непосредственной близости от силовых элементов, для предотвращения просачивания высокочастотных помех в осветительную сеть, если устройство питается от сети, устанавливать по цепи подводки сетевого напряжения LC фильтры нижних частот.

Несмотря на множество непростых моментов, импульсные преобразователи напряжения применяются широко, а работающие на высокой частоте (десятки-сотни килогерц) обладают рядом преимуществ, так:
Высокий КПД, вплоть до 97%;
Малая масса;
Малые габариты.

Для преобразования напряжения одного уровня в напряжение другого уровня часто применяют импульсные преобразователи напряжения с использованием индуктивных накопителей энергии . Такие преобразователи отличаются высоким КПД, иногда достигающим 95%, и обладают возможностью получения повышенного, пониженного или инвертированного выходного напряжения.

В соответствии с этим известно три типа схем преобразователей: понижающие (рис. 4.1), повышающие (рис. 4.2) и инвертирующие (рис. 4.3).

Общими для всех этих видов преобразователей являются пять элементов: источник питания, ключевой коммутирующий элемент, индуктивный накопитель энергии (катушка индуктивности, дроссель), блокировочный диод и конденсатор фильтра, включенный параллельно сопротивлению нагрузки.

Включение этих пяти элементов в различных сочетаниях позволяет реализовать любой из трех типов импульсных преобразователей.

Регулирование уровня выходного напряжения преобразователя осуществляется изменением ширины импульсов, управляющих работой ключевого коммутирующего элемента и, соответственно, запасаемой в индуктивном накопителе энергии.

Стабилизация выходного напряжения реализуется путем использования обратной связи: при изменении выходного напряжения происходит автоматическое изменение ширины импульсов.

Понижающий преобразователь (рис. 4.1) содержит последовательно включенную цепочку из коммутирующего элемента S1, индуктивного накопителя энергии L1, сопротивления нагрузки Rн и включенного параллельно ему конденсатора фильтра С1 . Блокировочный диод VD1 подключен между точкой соединения ключа S1 с накопителем энергии L1 и общим проводом.

Рис. 4.1. Принцип действия понижающего преобразователя напряжения

Рис. 4.2. Принцип действия повышающего преобразователя напряжения

При открытом ключе диод закрыт, энергия от источника питания накапливается в индуктивном накопителе энергии. После того, как ключ S1 будет закрыт (разомкнут), запасенная индуктивным накопителем L1 энергия через диод VD1 передастся в сопротивление нагрузки R н. Конденсатор С1 сглаживает пульсации напряжения.

Повышающий импульсный преобразователь напряжения (рис. 4.2) выполнен на тех же основных элементах, но имеет иное их сочетание: к источнику питания подключена последовательная цепочка из индуктивного накопителя энергии L1, диода VD1 и сопротивления нагрузки с параллельно подключенным конденсатором фильтра С1 . Коммутирующий элемент S1 включен между точкой соединения накопителя энергии L1 с диодом VD1 и общей шиной.

При открытом ключе ток от источника питания протекает через катушку индуктивности, в которой запасается энергия. Диод VD1 при этом закрыт, цепь нагрузки отключена от источника питания, ключа и накопителя энергии. Напряжение на сопротивлении нагрузки поддерживается благодаря запасенной на конденсаторе фильтра энергии. При размыкании ключа ЭДС самоиндукции суммируется с напряжением питания, запасенная энергия передается в нагрузку через открытый диод VD1. Полученное таким способом выходное напряжение превышает напряжение питания.


Рис. 4.3. Импульсное преобразование напряжения с инвертированием

Инвертирующий преобразователь импульсного типа содержит все то же сочетание основных элементов, но снова в ином их соединении (рис. 4.3): к источнику питания подключена последовательная цепочка из коммутирующего элемента S1, диода VD1 и сопротивления нагрузки R н с конденсатором фильтра С1. Индуктивный накопитель энергии L1 включен между точкой соединения коммутирующего элемента S1 с диодом VD1 и общей шиной.

Работает преобразователь так: при замыкании ключа энергия запасается в индуктивном накопителе. Диод VD1 закрыт и не пропускает ток от источника питания в нагрузку. При отключении ключа ЭДС самоиндукции накопителя энергии оказывается приложенной к выпрямителю, содержащему диод VD1, сопротивление нагрузки R н и конденсатор фильтра С1. Поскольку диод выпрямителя пропускает в нагрузку только импульсы отрицательного напряжения, на выходе устройства формируется напряжение отрицательного знака (инверсное, противоположное по знаку напряжению питания).

Для стабилизации выходного напряжения импульсных стабилизаторов любого типа могут быть использованы обычные «линейные» стабилизаторы, но они имеют низкий КПД. В этой связи гораздо логичнее для стабилизации выходного напряжения импульсных преобразователей использовать импульсные же стабилизаторы напряжения, тем более, что осуществить такую стабилизацию совсем несложно.

Импульсные стабилизаторы напряжения, в свою очередь, подразделяются на стабилизаторы с широтно-импульсной модуляцией и на стабилизаторы с частотно-импульсной модуляцией . В первых из них изменяется длительность управляющих импульсов при неизменной частоте их следования. Во вторых, напротив, изменяется частота управляющих импульсов при их неизменной длительности. Встречаются импульснью стабилизаторы и со смешанным регулированием.

Ниже будут рассмотрены радиолюбительские примеры эволюционного развития импульсных преобразователей и стабилизаторов напряжения.

Задающий генератор (рис. 4.4) импульсных преобразователей с нестабилизированным выходным напряжением (рис. 4.5, 4.6) на микросхеме КР1006ВИ1 (NE 555) работает на частоте 65 кГц. Выходные прямоугольные импульсы генератора через RC-цепочки подаются на транзисторные ключевые элементы, включенные параллельно.

Катушка индуктивности L1 выполнена на ферритовом кольце с внешним диаметром 10 мм и магнитной проницаемостью 2000. Ее индуктивность равна 0,6 мГн. Коэффициент полезного действия преобразователя достигает 82%. Амплитуда пульсаций на выходе не превышает 42 мВ и зависит от величины емкости


Рис. 4.4. Схема задающего генератора для импульсных преобразователей напряжения


Рис. 4.5. Схема силовой части повышающего импульсного преобразователя напряжения +5/12 В


Рис. 4.6. Схема инвертирующего импульсного преобразователя напряжения +5/-12 В

конденсаторов на выходе устройства. Максимальный ток нагрузки устройств (рис. 4.5, 4.6) составляет 140 мА.

В выпрямителе преобразователя (рис. 4.5, 4.6) использовано параллельное соединение слаботочных высокочастотных диодов, включенных последовательно с выравнивающими резисторами R1 - R3. Вся эта сборка может быть заменена одним современным диодом, рассчитанным на ток более 200 мА при частоте до 100 кГц и обратном напряжении не менее 30 В (например, КД204, КД226). В качестве VT1 и VT2 возможно использование транзисторов типа КТ81х: структуры n-р-n - КТ815, КТ817 (рис. 4.5) и р-n-р - КТ814, КТ816 (рис. 4.6) и другие. Для повышения надежности работы преобразователя рекомендуется включить параллельно переходу эмиттер - коллектор транзистoра диод типа КД204, КД226 таким образом, чтобы для постоянного тока он был закрыт.

ГОУ СПО Кировский Авиационный техникум

ДОКЛАД

по электропитанию СВТ

«Однотактные импульсные преобразователи»

Студента группы ВП-34

Беляева П.Ю.

1 Введение. Некоторые понятия. 3
2 Первичные ИИП 5
2.1 Прямоходовые и обратноходовые преобразователи 5
8
10
2.4 Мостовой преобразователь 11
3 Вторичные ИИП 13
4 Импульсные преобразователи 15
15
4.2 Импульсный однотактный преобразователь постоянного напряжения. Конвертор 16
5 Заключение 19
5.1 Электромагнитные и радиопомехи, создаваемые ИИП. 19
5.2 Интегральные микросхемы для ИИП. 19
5.3 Режим повторных включений ИИП. 20
5.4 ИИП с поддержкой питания 21
6 Литература 22

1 Введение. Некоторые определения

Импульсные (ключевые) источники питания - ИИП (SMPS) - это современные источники питания с высоким КПД. Традиционные линейные источники питания с последовательным регулирующим элементом сохраняют постоянное выходное напряжение при изменении входного напряжения или тока нагрузки благодаря изменению своего сопротивления. Линейный регулятор (стабилизатор) поэтому может быть очень неэффективным. Импульсный источник питания, однако, использует высокочастотный ключ (транзистор) с переменными величинами включенного-выключенного состояний, чтобы стабилизировать выходное напряжение. Пульсации выходного напряжения, вызванные ключевым режимом, отфильтрованы LC фильтром.

ИИП могут понижать напряжение питания, так же, как и линейные. В отличие от линейного регулятора(стабилизатора), однако, ИИП может также увеличивать напряжение питания и инвертировать выходное напряжение. Типовые схемы применения даются ниже.

Типовое применение для понижающего импульсного (ключевого) регулятора:

Формирование напряжения 5 В для питания цепей ТТЛ от 12 В батареи (особенно если 12 В батарея ограниченной емкости, поскольку ключевые стабилизаторы гораздо более эффективны чем линейные стабилизаторы).

Типовое применение для повышающего импульсного регулятора:

Формирование 25 В от напряжения 5 В для питания программируемого ПЗУ.

Типовое применение для инвертирующего импульсного регулятора:

Формирование двуполярного напряжения от однополярного для питания операционных усилителей.

Формирование отрицательного смещения для микросхем динамического ОЗУ.

Термин импульсный регулятор используется для описания схемы, которая преобразует постоянное напряжение в выходной сигнал также постоянного напряжения той же самой или противоположной полярности более низкого или более высокого напряжения. Импульсные регуляторы используют дроссели и не обеспечивают гальванической развязки между входом и выходом.

Термин импульсный преобразователь используется для описания схемы, которая преобразует постоянное напряжение в один или несколько выходных сигналов также постоянного напряжения более низкого или более высокого напряжения. Импульсные преобразователи используют трансформатор и обеспечивают гальваническую развязку (изоляцию) между входом и выходами, а также между выходами.

Термин импульсный источник питания - ИИП (SMPS) используется для описания импульсных регуляторов и преобразователей.

Рисунок 1.

Дополнительная обмотка трансформатора прямоходового преобразователя гарантирует, что к моменту включения ключа магнитное поле сердечника трансформатора нулевое. При отсутствии дополнительной обмотки после нескольких периодов переключения сердечник трансформатора войдет в насыщение, ток первичной обмотки чрезмерно увеличится, таким образом ключ (то есть транзистор) выйдет из строя.

Временные диаграммы напряжений и токов для прямоходового преобразователя показаны на рисунке 2.

Намагничивающий ток

Рисунок 2.

Выходное напряжение прямоходового преобразователя равно среднему значению напряжения на входе LC фильтра и равно:

V out = V in x (n2/n1) x (T on x f)

где:

T on - время включенного состояния ключа
f - частота переключения

Обратноходовый (flyback) преобразователь

Рисунок 3.

Выходное напряжение для обратноходового преобразователя (трапецеидальная форма электрического тока) может быть рассчитано следующим образом:

V out =V in x (n2/n1) x (T on x f) x (1/(1-(T on x f)))

где:
n2 - число витков вторичной обмотки T1
n1 - число витков первичной обмотки T1
T on - время включенного состояния ключа Q1

Cхема управления контролирует V out и управляет скважностью (временем включенного состояния ключа Q1).

Если V in увеличивается, схема управления уменьшит скважность, чтобы сохранить постоянное выходное напряжение. Аналогично, если ток нагрузки уменьшится и V out увеличится, схема управления будет действовать таким же образом. Наоборот, уменьшение V in или увеличение тока нагрузки увеличит скважность.

Заметим, что выходное напряжение меняется, когда изменяется коэффициент заполнения, T on x f. Однако зависимость между выходным напряжением и коэффициентом заполнения - не линейна, как имела место в прямоходовом преобразователе, это - гиперболическая функция.

Ток в обратноходовом преобразователе может иметь или трапецеидальную, или пилообразную форму. Трапецеидальная форма тока будет в том случае, если ключевой транзистор включается до того, как ток во вторичной обмотке спадет до нуля. Если пилообразный ток во вторичной обмотке успевает достичь нуля, то появляется "мертвое время", когда нет никакого тока ни в вторичной обмотке, ни в первичной.


Рисунок 4.

2.2 Двухтактный (Push Pull) преобразователь

Рисунок 5.

Двухтактный преобразователь относится к числу прямоходовых. Как показано на рисунке 5, когда ключ Q1 включен, ток течет через верхнюю половину первичной обмотки T1 и магнитное поле в сердечнике T1 растет. Растущее магнитное поле в T1 индуцирует напряжение во вторичной обмотке T1 такой полярности, что диод D2 смещен в прямом, а D1 - в обратном направлении. D2 проводит и заряжает выходнй конденсатор C2 через дроссель L1. L1 и C2 составляют схему фильтра. Когда ключ Q1 выключается, магнитное поле в трансформаторе T1 спадает, и после времени паузы (зависящего от скважности ШИМ), Q2 включается, ток течет через нижнюю половину первичной обмотки T1 и магнитное поле в сердечнике T1 растет в противоположном направлении. Растущее магнитное поле в T1 индуцирует напряжение во вторичной обмотке T1 такой полярности, что диод D1 смещен в прямом, а D2 - в обратном направлении. D1 проводит и заряжает выходной конденсатор C2 через дроссель L1. После окончания мертвого времени включается ключ Q1 и процесс повторяется.

Имеются два важных соображения, касающиеся двухтактного преобразователя:

  1. Оба транзистора не должны проводить одновременно, поскольку это было бы эквивалентно короткому замыканию источника питания. Это означает, что время включенного состояния каждого ключа не должно превышать половину периода, иначе наложатся проводящие состояния ключей.
  2. Магнитный режим обеих половин первичной обмотки (вольт-секундные площадки) должен быть строго одинаков, иначе трансформатор может войти в насыщение, и это вызвало бы выход из строя ключей Q1 и Q2.

Эти критерии должны удовлетворяться схемой управления и драйвером.

Выходное напряжение V out равно среднему значению напряжения на входе LC фильтра:

V out = V in x (n2/n1) x f x (T on, q1 + T on, q2)

где:
V out - среднее выходное напряжение - В
V in - Напряжение питания - В
n2 - число витков вторичной обмотки
n1 - половина общего числа витков первичной обмотки
f - частота переключения - Гц
T on, q1 - время включенного состояния ключа Q1 - с
T on, q2 - время включенного состояния ключа Q2 - с

Cхема управления контролирует V out и управляет включенным состоянием ключей Q1 и Q2.

Если V in увеличивается, схема управления уменьшит скважность, чтобы сохранить постоянное выходное напряжение. Аналогично, если ток нагрузки уменьшится и V out увеличится, схема управления будет действовать таким же образом. Наоборот, уменьшение V in или увеличение тока нагрузки увеличит скважность. Временные диаграммы на рисунке 6 показывают токи двухтактного преобразователя.

Рисунок 6.

2.3 Полумостовой преобразователь

Рисунок 7.

Полумостовой преобразователь подобен двухтактному преобразователю, только не требуется делать отвод от середины первичной обмотки. Изменение направления магнитного поля достигается изменением направление тока первичной обмотки. Этот тип преобразователя применяется в преобразователях большой мощности.

Для полумостового преобразователя выходное напряжение V out равно среднему значению напряжения на входе LC фильтра.

V out = (V in /2) x (n2/n1) x f x (T on,q1 + T on,q2)

где:


f - рабочая частота - Гц

Заметим, что T on,q1 должно быть равно T on,q2 и что Q1 и Q2 никогда не должны проводить одновременно.

Схема управления полумостового преобразователя подобна схеме управления двухтактного преобразователя.

2.4 Мостовой преобразователь

Рисунок 8.

Мостовой преобразователь подобен двухтактному преобразователю, только не требуется делать отвод от середины первичной обмотки. Изменение направления магнитного поля достигается изменением направление тока первичной обмотки. Этот тип преобразователя применяется в преобразователях большой мощности.

Для мостового преобразователя выходное напряжение V out равно среднему значению напряжения на входе LC фильтра.

V out = V in x (n2/n1) x f x (T on,q1 + T on,q2)

где:
V out - выходное напряжение - В
V in - входное напряжение - В
n2 - 0.5 x количество витков вторичной обмотки
n1 - количество витков первичной обмотки
f - рабочая частота - Гц
T on,q1 - время включенного состояния ключа Q1 - с
T on,q2 - время включенного состояния ключа Q2 - с

Диагональные пары транзисторов поочередно проводят, таким образом достигая изменения направления тока в первичной обмотке трансформатора. Это можно пояснить следующим образом - когда включены ключи Q1 и Q4, ток будет течь "вниз" через первичную обмотку трансформатора (втекать в начало обмотки), а когда включены ключи Q2 и Q3, ток будет течь "вверх".

Схема управления контролирует Vout и управляет скважностью импульсов управления ключей Q1, Q2, Q3 и Q4.

Схема управления работает так же, как и для двухтактного и полумостового преобразователя, за исключением того, что надо управлять четырьмя транзисторами, а не двумя.

3 Вторичные ИИП

Импульсный источник питания, который дает низкое напряжение, изолированный от первичного источника, часто называется вторичным ИИП. Типичная блок-схема такого источника питания показана на рисунке 9.


Рисунок 9.

Фильтр, показанный в левой части блок-схемы, необходим для предотвращения попадания в сет помех из источника питания. Он также помогает предохранять цепи ИИП от импульсов напряжения (или скачки напряжения) в сети переменного тока.

Типовая силовая часть такой схемы показана на рисунке 10.


Рисунок 10.

Конденсатор при питании от сети переменного тока 220 В заряжается до напряжения приблизительно 310 В (340 В для 240 В). Резистор R1 - низкоомный (номинал от 2 до 4 Ом), который предохраняет схему от бросков тока при заряде конденсатора C1 во время подачи питания. Q1 - высоковольтный МОП-транзистор, который используется в качестве быстродействующего ключа, переключающего импульс питающего тока в ферритовом высокочастотном трансформаторе T1. Частота переключения обычно лежит в диапазоне от 25 до 250 кГц. Элементы R2 и C2 составляют защитную цепь (snubber), которая уменьшает выбросы напряжения и шумы переключателя. Стабилизация достигается благодаря контролю за выходным напряжением в точке "FB" и регулирования ширины входных импульсов драйвера ключа Q1. Предохранитель FS2 необходим для защиты от короткого замыкания и перегрузки. FS2 иногда заменяется датчиком тока, который запирает при перегрузке драйвер ключа Q1.

4 Импульсные преобразователи

В регулируемом линейном источнике питания силовой трансформатор промышленной частоты используется для изоляции, а затем выпрямитель и линейный регулятор используются для формирования выходного напряжения.

В управляемом ИИП изоляция и регулирование объединены в единое целое, имеющее высокий КПД. В ИИП используется маленький высокочастотный трансформатор, обычно работающий в диапазоне частот от 25 до 250 кГц (хотя в маломощных ИИП до 1 МГц).

Трансформаторы и дроссели, используемые для ИИП, имеют ферритовые сердечники в противоположность листовым железным сердечникам их более низкочастотных двойников. Трансформаторы ИИП вообще имеют меньшее количество витков в обмотках чем трансформаторы промышленной частоты.

4.1 Однотактный преобразователь напряжения

Однотактный преобразователь напряжения содержит трансформатор, первичная обмотка которого состоит из двух частей с числом витков w1 и w2, первый транзистор, соединенный с блоком управления, и второй транзистор, шунтированный обратным диодом. Между эмиттерами транзисторов включен конденсатор. Коллекторы первого и второго транзисторов соединены с крайними выводами обмоток трансформатора. Кроме того, коллектор первого транзистора через резистор, шунтированный последовательной RC-цепью, образующие токозадающую цепь, соединен с входом управления второго транзистора.

В качестве первого и второго транзисторов в данном преобразователе могут быть использованы любые другие ключевые элементы, например, МОП транзисторы и т.д.

Однотактный преобразователь постоянного напряжения работает следующим образом.

При поступлении отпирающего сигнала на базу транзистора последний открывается, к обмотке трансформатора прикладывается входное напряжение. При этом к управляющему переходу транзистора прикладывается запирающее напряжение, практически равное напряжению конденсатора, и он запирается. Через второй транзистор протекает сумма токов намагничивания сердечника трансформатора и нагрузки. По окончании управляющего импульса транзистор запирается, ток намагничивания замыкается через диод, конденсатор и обмотку. К управляющему электроду второго транзистора прикладывается отпирающее напряжение, равное разности коллекторного напряжения первого транзистора и напряжения конденсатора. Второй транзистор отпирается, обеспечивая протекание тока намагничивания в обратном направлении.

Благодаря конденсатору ток намагничивания протекает непрерывно в течение всего периода следования импульсов с блока управления и среднее значение этого тока равно нулю. Это приводит к тому, что размагничивающее напряжение прикладывается к обмотке в течение всего времени запертого состояния первого транзистора, а перемагничивание сердечника трансформатора осуществляется по полному циклу с малой амплитудой тока намагничивания.

Таким образом, в предложенном устройстве уменьшены потери мощности на резисторе, включенном в управляющей цепи дополнительного ключа, за счет снижения напряжения на нем.

4.2 Импульсный однотактный преобразователь постоянного напряжения . Конвертор.

Импульсные преобразователи постоянного напряжения (ИППН) регулируют выходное напряжение (напряжение на нагрузке) путём изменения времени подачи напряжения Uo на нагрузку Zн. Чаще всего применяют широтно-импульсный (ШИР) и частотно-импульсный (ЧИР) способы регулирования. Принцип действия ИППН основан на ключевом режиме транзистора или тиристора, которые периодически прерывают цепь подачи напряжения U0 в нагрузку (Рисунок 11). При широтно-импульсном способе выходное напряжение регулируют изменением длительности выходных импульсов tи (рисунок 12) при неизменном периоде их следования Т. Тогда среднее значение выходного напряжения преобразователя будет определяться по формуле Uн.ср=(tи/T)*Uо. Следовательно, выходное напряжение регулируют от нуля (при tи=0) до Uо(tи=T).

Рисунок 11.

Рисунок 12.

На рисунке 13 изображена схема широко распространённого ИППН . Такой преобразователь называют однотактным. В качестве ключа служит тиристор. Между нагрузкой Z н и тиристором включен сглаживающий LC-фильтр.


Рисунок 13.

Диод Д, выполняющий функции обратного диода, необходим для создания электрической цепи для тока нагрузки при выключенном тиристоре.

Однотактные ИППН работают при мощности 100 кВт. Если требуется большая мощность, прибегают к многотактным ИППН.

Во всех ИППН отпирание проводниковых ключей производится путём принудительной подачи на тиристор (транзистор) коммутирующих импульсов, запирание же тиристоров осуществляется напряжением периодически перезаряжаемого конденсатора. Естественно, что коммутационный блок в ИППН имеет некоторое отличие от подобных блоков в автономных инверторах.

Отметим, что регулирование постоянного напряжения на нагрузке при питании от сети переменного тока можно осуществить с помощью ИППН. Небольшое падение напряжения на открытом полупроводниковом ключе и очень малый ток при его запертом состоянии определяют высокий КПД импульсных преобразователей постоянного напряжения. В этом отношении неуправляемый выпрямитель, работающий в паре с ИППН, успешно конкурирует с управляемым выпрямителем.

Преимущество импульсных преобразователей постоянного напряжения по сравнению с конверторами с самовозбуждением является то, что в ИППН в качестве ключей применяют тиристоры, которые в настоящее время выпускаются на напряжения до нескольких киловольт. Это позволяет создать конверторы большой мощности (свыше 100 кВт) с высоким КПД, меньшими габаритами и массой. Конверторы получили широкое применение в установках, в которых первичным источником электропитания являются контактная сеть, аккумуляторы, солнечные и атомные батарейки, термоэлектрические генераторы.

5 Заключение

5.1 Электромагнитные и радиопомехи, создаваемые ИИП

Известно, что импульсные источники питания создают электромагнитные и радиопомехи. НЧ фильтры в подводящих проводах жизненно важны для уменьшения наводок по цепям питания. Экран Фарадея между обмотками трансформатора и вокруг чувствительных компонентов вместе с правильным расположением в блоке цепей, компенсирующим поля, также уменьшают электромагнитные и радиопомехи. Проблема сглаживания тока пилообразной формы требует применения фильтрового конденсатора. Индуктивность и сопротивление (последовательно включенные) стандартных электролитических конденсаторов влияют на пульсации и напряжения шума в выходных сигналах. Линейные источники питания не имеют себе равных в маломощных и очень малошумящих с низкими пульсациями в выходных сигналах источниках.

5.2 Интегральные микросхемы для ИИП

Mullard:

TDA2640

TDA2581

SGS:

L4960

Диапазон входного напряжения - 9 - 50 В постоянного тока

Регулируемое выходное напряжение - от 5 до 40 В

Максимальный выходной ток - 2.5 А

Максимальная выходная мощность - 100 Вт

Встроенная схема плавного включения

Стабильность внутреннего опорного источника - +\- 4 %

Требует очень небольшого числа навесных компонентов

Коэффициент заполнения - 0 - 1

Высокий КПД - выше 90 %

Встроенная тепловая защита от перегрузки: микросхема выключается, когда температура pn-перехода достигает 150 град. C.

Встроенный ограничитель тока для защиты от короткого замыкания

L4962 (16-выводной DIP корпус. Выходной ток до 1.5 А)

L4964 (специальный 15- выводной корпус. Выходной ток до 4 А)

Texas Instruments:

TL494

TL497

TL497 имеет генератор с фиксированным временем включенного состояния, но с переменной выходной частотой. Это дает минимальное количество навесных элементов. Время включенного состояния определяется значением емкости конденсатора, подключенного между выводом 3 и землей.

Рисунок 14.

5.3 Режим повторных включений ИИП

В импульсных источниках питания такой режим часто используется для ограничения выходного тока. Если ИИП перегружен, схема выключается. После некоторого интервала времени он включается, если перегрузка все еще существует, он немедленно выключается. На некоторых конструкциях, если это случается несколько раз, питание отключается, пока не будет сброшена блокировка схемы.

5.4 ИИП с поддержкой питания

Некоторые "более автономные" ИИП разработаны так, чтобы сохранить устойчивое выходное напряжение более чем несколько периодов при отключении входного питания. Это может быть достигнуто установкой входного конденсатора большой емкости, такой, что его напряжение не будет существенно падать в течение перерывов подачи энергии. Период времени, в течение которого ИИП поддерживает выходное напряжение, когда отсутствует входное, часто называют "временем поддержки питания".

6 Литература

1. INTERNET:

SGS Power Supply Application manual

Motorola Power MOSFET Transistor Databook

Unitrode Semiconductor Databook

Unitrode Applications Handbook

Transformer Core Selection for SMPS, Mullard

Soft Ferrites - Properties and Applications, E.C. Snelling

Switchmode - A Designer"s Guide, Motorola

SMPS Technology and Components, Siemens

Texas Instruments Linear Circuits Databook

Analogue Electronics Handbook, T.H. Collins

Smith, K.L. Ph.D. (University of Kent), "D.C. Supplies from A.C. Sources", Electronics & Wireless World, September 1984.

Иванов В.С., Панфилов Д.И. Компоненты силовой электроники фирмы MOTOROLA. - М.: ДОДЭКА, 1998

Силовые полупроводниковые приборы International Rectifier. Пер. п/р В.В.Токарева. - Воронеж, 1995

Микросхемы для импульсных источников питания и их применение. Изд. 2-е. - М.: ДОДЭКА, 2000

Поликарпов А.Г., Сергиенко Е.Ф. Однотактные преобразователи напряжения в устройствах электропитания РЭА. - М.: Радио и связь, 1989

Поликарпов А.Г., Сергиенко Е.Ф. Импульсные регуляторы и преобразователи постоянного напряжения. - М.: Изд-во МЭИ, 1998

Для питания различной электронной аппаратуры весьма широко используются DC/DC преобразователи. Применяются они в устройствах вычислительной техники, устройствах связи, различных схемах управления и автоматики и др.

Трансформаторные блоки питания

В традиционных трансформаторных блоках питания напряжение питающей сети с помощью трансформатора преобразуется, чаще всего понижается, до нужного значения. Пониженное напряжение выпрямляется диодным мостом и сглаживается конденсаторным фильтром. В случае необходимости после выпрямителя ставится полупроводниковый стабилизатор.

Трансформаторные блоки питания, как правило, оснащаются линейными стабилизаторами. Достоинств у таких стабилизаторов не менее двух: это маленькая стоимость и незначительное количество деталей в обвязке. Но эти достоинства съедает низкий КПД, поскольку значительная часть входного напряжения используется на нагрев регулирующего транзистора, что совершенно неприемлемо для питания переносных электронных устройств.

DC/DC преобразователи

Если питание аппаратуры осуществляется от гальванических элементов или аккумуляторов, то преобразование напряжения до нужного уровня возможно лишь с помощью DC/DC преобразователей.

Идея достаточно проста: постоянное напряжение преобразуется в переменное, как правило, с частотой несколько десятков и даже сотен килогерц, повышается (понижается), а затем выпрямляется и подается в нагрузку. Такие преобразователи часто называются импульсными.

В качестве примера можно привести повышающий преобразователь из 1,5В до 5В, как раз выходное напряжение компьютерного USB. Подобный преобразователь небольшой мощности продается на Алиэкспресс - http://ali.pub/m5isn .

Рис. 1. Преобразователь 1,5В/5В

Импульсные преобразователи хороши тем, что имеют высокий КПД, в пределах 60..90%. Еще одно достоинство импульсных преобразователей широкий диапазон входных напряжений: входное напряжение может быть ниже выходного или намного выше. Вообще DC/DC конвертеры можно разделить на несколько групп.

Классификация конвертеров

Понижающие, по английской терминологии step-down или buck

Выходное напряжение этих преобразователей, как правило, ниже входного: без особых потерь на нагрев регулирующего транзистора можно получить напряжение всего несколько вольт при входном напряжении 12…50В. Выходной ток таких преобразователей зависит от потребности нагрузки, что в свою очередь определяет схемотехнику преобразователя.

Еще одно англоязычное название понижающего преобразователя chopper. Один из вариантов перевода этого слова - прерыватель. В технической литературе понижающий конвертер иногда так и называют «чоппер». Пока просто запомним этот термин.

Повышающие, по английской терминологии step-up или boost

Выходное напряжение этих преобразователей выше входного. Например, при входном напряжении 5В на выходе можно получить напряжение до 30В, причем, возможно его плавное регулирование и стабилизация. Достаточно часто повышающие преобразователи называют бустерами.

Универсальные преобразователи - SEPIC

Выходное напряжение этих преобразователей удерживается на заданном уровне при входном напряжении как выше входного, так и ниже. Рекомендуется в случаях, когда входное напряжение может изменяться в значительных пределах. Например, в автомобиле напряжение аккумулятора может изменяться в пределах 9…14В, а требуется получить стабильное напряжение 12В.

Инвертирующие преобразователи - inverting converter

Основной функцией этих преобразователей является получение на выходе напряжения обратной полярности относительно источника питания. Очень удобно в тех случаях, когда требуется двухполярное питание, например .

Все упомянутые преобразователи могут быть стабилизированными или нестабилизированными, выходное напряжение может быть гальванически связано с входным или иметь гальваническую развязку напряжений. Все зависит от конкретного устройства, в котором будет использоваться преобразователь.

Чтобы перейти к дальнейшему рассказу о DC/DC конвертерах следует хотя бы в общих чертах разобраться с теорией.

Понижающий конвертер чоппер - конвертер типа buck

Его функциональная схема показана на рисунке ниже. Стрелками на проводах показаны направления токов.


Рис.2. Функциональная схема чопперного стабилизатора

Входное напряжение Uin подается на входной фильтр - конденсатор Cin. В качестве ключевого элемента используется транзистор VT, он осуществляет высокочастотную коммутацию тока. Это может быть транзистор структуры MOSFET, IGBT либо обычный биполярный транзистор. Кроме указанных деталей в схеме содержится разрядный диод VD и выходной фильтр - LCout, с которого напряжение поступает в нагрузку Rн.

Нетрудно видеть, что нагрузка включена последовательно с элементами VT и L. Поэтому схема является последовательной. Как же происходит понижение напряжения?

Широтно-импульсная модуляция - ШИМ

Схема управления вырабатывает прямоугольные импульсы с постоянной частотой или постоянным периодом, что в сущности одно и то же. Эти импульсы показаны на рисунке 3.


Рис.3. Импульсы управления

Здесь tи время импульса, транзистор открыт, tп - время паузы, - транзистор закрыт. Соотношение tи/T называется коэффициентом заполнения duty cycle, обозначается буквой D и выражается в %% или просто в числах. Например, при D равном 50% получается, что D=0,5.

Таким образом D может изменяться от 0 до 1. При значении D=1 ключевой транзистор находится в состоянии полной проводимости, а при D=0 в состоянии отсечки, попросту говоря, закрыт. Нетрудно догадаться, что при D=50% выходное напряжение будет равно половине входного.

Совершенно очевидно, что регулирование выходного напряжения происходит за счет изменения ширины управляющего импульса tи, по сути дела изменением коэффициента D. Такой принцип регулирования называется (PWM). Практически во всех импульсных блоках питания именно с помощью ШИМ производится стабилизация выходного напряжения.

На схемах, показанных на рисунках 2 и 6 ШИМ «спрятана» в прямоугольниках с надписью «Схема управления», которая выполняет некоторые дополнительные функции. Например, это может быть плавный запуск выходного напряжения, дистанционное включение или защита преобразователя от короткого замыкания.

Вообще конвертеры получили столь широкое применение, что фирмы производители электронных компонентов наладили выпуск ШИМ контроллеров на все случаи жизни. Ассортимент настолько велик, что просто для того чтобы их перечислить понадобится целая книга. Поэтому собирать конвертеры на дискретных элементах, или как часто говорят на «рассыпухе», никому не приходит в голову.

Более того готовые конвертеры небольшой мощности можно купить на Алиэкспрес или Ebay за незначительную цену. При этом для установки в любительскую конструкцию достаточно припаять к плате провода на вход и выход, и выставить требуемое выходное напряжение.

Но вернемся к нашему рисунку 3. В данном случае коэффициент D определяет, сколько времени будет открыт (фаза 1) или закрыт (фаза 2) . Для этих двух фаз можно представить схему двумя рисунками. На рисунках НЕ ПОКАЗАНЫ те элементы, которые в данной фазе не используются.


Рис.4. Фаза 1

При открытом транзисторе ток от источника питания (гальванический элемент, аккумулятор, выпрямитель) проходит через индуктивный дроссель L, нагрузку Rн, и заряжающийся конденсатор Cout. При этом через нагрузку протекает ток, конденсатор Cout и дроссель L накапливают энергию. Ток iL ПОСТЕПЕННО ВОЗРАСТАЕТ, сказывается влияние индуктивности дросселя. Эта фаза называется накачкой.

После того, как напряжение на нагрузке достигнет заданного значения (определяется настройкой устройства управления), транзистор VT закрывается и устройство переходит ко второй фазе - фазе разряда. Закрытый транзистор на рисунке не показан вовсе, как будто его и нет. Но это означает лишь то, что транзистор закрыт.


Рис.5. Фаза 2

При закрытом транзисторе VT пополнения энергии в дросселе не происходит, поскольку источник питания отключен. Индуктивность L стремится воспрепятствовать изменению величины и направления тока (самоиндукция) протекающего через обмотку дросселя.

Поэтому ток мгновенно прекратиться не может и замыкается через цепь «диод-нагрузка». Из-за этого диод VD получил название разрядный. Как правило, это быстродействующий диод Шоттки. По истечении периода управления фаза 2 схема переключается на фазу 1, процесс повторяется снова. Максимальное напряжение на выходе рассмотренной схемы может быть равным входному, и никак не более. Чтобы получить выходное напряжение больше, чем входное, применяются повышающие преобразователи.

Пока только следует напомнить собственно о величине индуктивности, которая определяет два режима работы чоппера. При недостаточной индуктивности преобразователь будет работать в режиме разрывных токов, что совершенно недопустимо для источников питания.

Если же индуктивность достаточно большая, то работа происходит в режиме неразрывных токов, что позволяет с помощью выходных фильтров получить постоянное напряжение с приемлемым уровнем пульсаций. В режиме неразрывных токов работают и повышающие преобразователи, о которых будет рассказано ниже.

Для некоторого повышения КПД разрядный диод VD заменяется транзистором MOSFET, который в нужный момент открывается схемой управления. Такие преобразователи называются синхронными. Их применение оправдано, если мощность преобразователя достаточно велика.

Повышающие step-up или boost преобразователи

Повышающие преобразователи применяются в основном при низковольтном питании, например, от двух-трех батареек, а некоторые узлы конструкции требуют напряжения 12…15В с малым потреблением тока. Достаточно часто повышающий преобразователь кратко и понятно называют словом «бустер».


Рис.6. Функциональная схема повышающего преобразователя

Входное напряжение Uin подается на входной фильтр Cin и поступает на последовательно соединенные L и коммутирующий транзистор VT. В точку соединения катушки и стока транзистора подключен диод VD. К другому выводу диода подключены нагрузка Rн и шунтирующий конденсатор Cout.

Транзистор VT управляется схемой управления, которая вырабатывает сигнал управления стабильной частоты с регулируемым коэффициентом заполнения D, так же, как было рассказано чуть выше при описании чопперной схемы (Рис.3). Диод VD в нужные моменты времени блокирует нагрузку от ключевого транзистора.

Когда открыт ключевой транзистор правый по схеме вывод катушки L соединяется с отрицательным полюсом источника питания Uin. Нарастающий ток (сказывается влияние индуктивности) от источника питания протекает через катушку и открытый транзистор, в катушке накапливается энергия.

В это время диод VD блокирует нагрузку и выходной конденсатор от ключевой схемы, тем самым предотвращая разряд выходного конденсатора через открытый транзистор. Нагрузка в этот момент питается энергией накопленной в конденсаторе Cout. Естественно, что напряжение на выходном конденсаторе падает.

Как только напряжение на выходе станет несколько ниже заданного, (определяется настройками схемы управления), ключевой транзистор VT закрывается, и энергия, запасенная в дросселе, через диод VD подзаряжает конденсатор Cout, который подпитывает нагрузку. При этом ЭДС самоиндукции катушки L складывается с входным напряжением и передается в нагрузку, следовательно, напряжение на выходе получается больше входного напряжения.

По достижении выходным напряжением установленного уровня стабилизации схема управления открывает транзистор VT, и процесс повторяется с фазы накопления энергии.

Универсальные преобразователи - SEPIC (single-ended primary-inductor converter или преобразователь с несимметрично нагруженной первичной индуктивностью).

Подобные преобразователи применяются в основном, когда нагрузка имеет незначительную мощность, а входное напряжение изменяется относительно выходного в большую или меньшую сторону.


Рис.7. Функциональная схема преобразователя SEPIC

Очень похожа на схему повышающего преобразователя, показанного на рисунке 6, но имеет дополнительные элементы: конденсатор C1 и катушку L2. Именно эти элементы и обеспечивают работу преобразователя в режиме понижения напряжения.

Преобразователи SEPIC применяются в тех случаях, когда входное напряжение изменяется в широких пределах. В качестве примера можно привести 4V-35V to 1.23V-32V Boost Buck Voltage Step Up/Down Converter Regulator. Именно под таким названием в китайских магазинах продается преобразователь, схема которого показана на рисунке 8 (для увеличения нажмите на рисунок).


Рис.8. Принципиальная схема преобразователя SEPIC

На рисунке 9 показан внешний вид платы с обозначением основных элементов.


Рис.9. Внешний вид преобразователя SEPIC

На рисунке показаны основные детали в соответствии с рисунком 7. Следует обратить внимание на наличие двух катушек L1 L2. По этому признаку можно определить, что это именно преобразователь SEPIC.

Входное напряжение платы может быть в пределах 4…35В. При этом выходное напряжение может настраиваться в пределах 1,23…32В. Рабочая частота преобразователя 500КГц.При незначительных размерах 50 x 25 x 12мм плата обеспечивает мощность до 25 Вт. Максимальный выходной ток до 3А.

Но тут следует сделать замечание. Если выходное напряжение установить на уровне 10В, то выходной ток не может быть выше 2,5А (25Вт). При выходном напряжении 5В и максимальном токе 3А мощность составит всего 15Вт. Здесь главное не перестараться: либо не превысить максимально допустимую мощность, либо не выйди за пределы допустимого тока.

До недавнего времени наиболее распространенные источники питания имели трансформаторную схему с выпрямителем и емкостным фильтром. Со временем их вытеснили источники питания на основе импульсных преобразователей. Импульсные источники питания выгодно отличаются большей удельной мощностью. Высокочастотные трансформаторы обладают меньшими габаритами и требуют меньших затрат медного провода что значительно снижает стоимость всего изделия в целом. Тем не менее, трансформаторные схемы промышленной частоты 50 (60) Гц будут актуальны и впредь в виду своей простоты и надежности.

Классификация

Преобразователи питающего напряжения можно классифицировать следующим образом:

  1. По роду питающего напряжения:
    постоянного;
    переменного;
    универсальные.
  2. По коэффициенту преобразования напряжения:
    повышающие;
    понижающие.
  3. По характеру выходной вольтамперной характеристики (ВАХ):
    не стабилизированные;
    стабилизированные;
    регулируемые.
  4. По типу базовой схемы преобразования:
    трансформаторная низкочастотная;
    импульсная дроссельная;
    импульсная однотактная обратноходовая, прямоходовая;
    импульсная двухтактная, мостовая и полумостовая схемы;
    инверторы;
    тиристорные и симисторные преобразовательные схемы.

Низкочастотные трансформаторные схемы

Рисунок 1. Трансформатор переменного тока

Трансформаторные схемы отличаются простотой и надёжностью. Применяются для преобразования переменного напряжения синусоидальной формы. Базовая схема изображена на рисунке 1. Частота преобразования соответствует применяемой частоте питающей сети, в подавляющем большинстве случаев это 50 Гц, в некоторых странах 60 Гц, и изредка 400 Гц для питания специализированного оборудования.

Классификация по коэффициенту преобразования напряжения

Коэффициент преобразования трансформаторной схемы равен отношению выходного номинального напряжения к входному:

При К <1 схема является понижающей . Это наиболее часто встречающийся тип трансформаторных преобразователей промышленной частоты. Широко используется в источниках питания бытовой и промышленной электроники.

При K >1 схема повышающая. Применяется в тех случаях, когда требуется более высокое напряжение по отношению к первичному. Иногда используется в качестве базовой схемы в инверторных преобразователях, а также для получения высоких напряжений, например, для питания магнетрона микроволновых печей, и т.п.

При K=1 величина выходного напряжения практически не изменяется по отношению к входному. Данная схема иногда применяется для гальванической развязки, когда необходимо исключить влияние сетевого напряжения на питаемый объект, или с целью электробезопасности.

Классификация по характеру выходной ВАХ

Нерегулируемые трансформаторы

Имеют одну первичную и одну, или несколько вторичных обмоток, чаще всего гальванически изолированных от первичной. ВАХ зависит от ряда условий и является неизменной.

Регулируемые трансформаторы – автотрансформаторы

Рисунок 2. Автотрансформатор

Автотрансформаторы предназначены для плавного или ступенчатого регулирования выходного напряжения. Чаще всего имеют одну обмотку, которая играет роль первичной и вторичной одновременно, а регулирование напряжения производится переключением выходной клеммы между различными выводами обмотки.

Входная клемма автотрансформатора подключается не на крайний вывод, а с небольшим смещением на несколько выводов к середине обмотки. Это позволяет при регулировании добиваться коэффициента преобразования как ниже, так и выше единицы. Коммутация выхода с выводами обмоток производится пакетным переключателем, или аналогичным коммутационным устройством.

При необходимости более плавного регулирования выходного напряжения применяются автотрансформаторы с видоизменённым конструктивом. Вся обмотка наматывается в один слой на тороидальном сердечнике виток к витку с небольшим зазором между витками. Часть изоляции с торцевой стороны тороидальной обмотки снимается с проводника для возможности подключения коммутационного устройства к каждому витку. Для контакта с витками используется скользящий или роликовый графитовый бегунок. Благодаря такой конструкции производится более плавное переключение между выводами (места, освобождённые от изоляции), а перемещение бегунка практически по всей обмотке трансформатора позволяет получать на выходе напряжения от нуля до максимального значения коэффициента трансформации. Благодаря такой специфической конструкции и возможности столь глубокого регулирования выходной величины напряжения, такие автотрансформаторы принято называть лабораторными автотрансформаторами, или сокращённо ЛАТР . Упрощённая электрическая схема ЛАТРа показана на рисунке 2.

Трансформаторные схемы с выпрямителем

Вбольшинстве случаев промышленные и бытовые электронные устройства требуют питания от источника постоянного тока. Для этого трансформаторные схемы дополняют полупроводниковым выпрямителем, а для сглаживания пульсаций выпрямленного напряжения на выход схемы выпрямителя включают сглаживающий конденсатор. Базовая схема показана на рисунке 3, и может усложняться в зависимости от требований к ВАХ источника питания.

В некоторых случаях для питания различных блоков схемы требуются напряжения разных уровней, или симметричный источник питания со средней точкой. Для этого используются многообмоточные трансформаторы с подключением к каждой обмотке разных напряжений или плеч отдельного выпрямителя с ёмкостным фильтром.

Импульсные преобразователи постоянного напряжения

Когда требуется запитать устройство от напряжения со сниженным значением по отношению к имеющемуся напряжению питания, часто применяются схемы стабилизаторов на основе делителей напряжения - транзисторов или интегральных стабилизаторов. Недостатком этого способа является то, что при необходимости значительного снижения напряжения питания относительно первичного, на регулирующем элементе (транзисторе, микросхеме стабилизатора) выделяется тепло, пропорциональное квадрату тока его нагрузки. При значительной мощности нагрузки такое преобразование влечёт весомые потери энергии и снижение КПД. Для более эффективного преобразования питающего напряжения применяются импульсные преобразователи, работа которых основана на частотно-импульсной или широтно-импульсной модуляции.

Для понимания процесса импульсной модуляции рассмотрим схему на рисунке 4. На выводы входа «Общ.» и «Uип» подаётся напряжение первичного источника. Ключ SA1 управляется устройством управления в импульсном режиме, периодически замыкая и размыкая цепь заряда конденсатора C1 через балластный резистор Rб. При замыкании ключа SA1 конденсатор начинает заряжаться, напряжение на нём постепенно растёт. При размыкании ключа заряд прекращается. Если нагрузка отключена, то напряжение на конденсаторе остаётся неизменным до следующего замыкания ключа. Когда к выходу подключена нагрузка, то конденсатор разряжается, напряжение на нём падает. Если рассматривать этот повторяющийся процесс в течении длительного времени, то будут заметны значительные колебания напряжения на выходе устройства при нагрузке. Чтобы эти колебания были не столь значительны, достаточно сократить время процесса заряда и разряда конденсатора, т.е. увеличить частоту следования импульсов коммутации до приемлемых значений.

Уровень напряжения на выходе такого преобразователя зависит от отношения времени замкнутого положения ключа ко времени разомкнутого положения и от величины нагрузки. Если принять величину нагрузки постоянной, тогда уровень напряжения будет прямо пропорционален длительности импульса в периоде. Отношение длительности импульса к периоду следования называется коэффициентом заполнения импульсов:

где D – коэффициент заполнения импульсов, t – длительность импульса, T – период следования импульсов.

Чем больше коэффициент заполнения импульсов, тем выше может быть поднято напряжение на выходе преобразователя. Для исследования работы такого преобразователя можно собрать базовую схему, изображённую на рисунке 5.

Ключ VT1 коммутирует цепь заряда конденсатора C1 через балластный (токоограничивающий) резистор Rб. Подтягивающий резистор Rп ускоряет стечение электронов из области базы в момент запирания ключа VT1. Rо – резистор, ограничивающий максимальный ток базы ключа VT1. VT2 – ключ управления током базы транзистора VT1. Его назначение – согласование работы схемы с сигналом генератора относительно минуса питания, принципиального значения не имеет, если сигнал генератора инвертировать и подавать относительно плюса питания на базу ключа VT1.

Коэффициент заполнения можно изменять несколькими способами. Рассмотрим их по отдельности.

Частотно-импульсная модуляция (ЧИМ)

При изменении частоты следования импульсов одинаковой длительности меняется только длительность пауз между ними. Длительность импульсов - величина постоянная, она ограничивает максимально возможную частоту, которой достигнет генератор при максимально возможном коэффициенте заполнения импульса, т.е., когда приближенно выполняется равенство

Частота при этом будет равна

Рисунок 6 иллюстрирует принцип частотно-импульсной модуляции. Красная прямая «а» - условно линейная временная зависимость напряжения на фильтрующем конденсаторе C1 (схема на рис.5) во время заряда (ключ VT1 замкнут). Зелёная прямая «б» - условно линейная временная зависимость напряжения на фильтрующем конденсаторе при его разряде на нагрузку. t – длительность импульсов, одинаковая для всех импульсов. T1, T2, T7 и Tn – период следования импульса соответствующего порядка. Как иллюстрирует приведённый пример, периоды следования импульсов могут отличаться, и влияют на среднее значение энергии передаваемой от первичного источника на выход.

В нижней части рисунка изображена теоретически истинная диаграмма напряжения на фильтрующем конденсаторе, состоящая из отрезков, отражающих периодически повторяющийся заряд/разряд. Синяя кривая показывает усреднённое значение напряжения на выходе преобразователя. Горизонтальный участок этой кривой демонстрирует режим стабилизации напряжения выхода – Uст.

Широтно-импульсная модуляция (ШИМ)

При неизменном периоде следования импульсов, т.е., когда частота импульсов не меняется, модуляция производится изменением длительности импульсов, при этом обратно пропорционально изменяется длительность пауз. Принцип несколько похож на частотно-импульсную модуляцию.

Широтно-импульсная модуляция проиллюстрирована на рисунке 7. В отличии от ЧИМ, здесь период следования импульсов T является постоянной величиной, а длительность импульсов порядка t1, t4, tn меняется в зависимости от требуемого уровня модулируемой выходной величины.

Отличие рассмотренных методов позволяет для выполнения одной задачи применять различные схемотехнические решения.

Применяя частотную, или широтно-импульсную модуляцию можно ограничивать, стабилизировать или динамически регулировать выходную величину. На рисунке 8 продемонстрированы примеры ЧИМ и ШИМ регулирования.

Схемотехника импульсных преобразователей

Рассматривая схему на рисунках 4 и 5, можно обратить внимание на один значительный недостаток такого решения: через балластный резистор Rб при замкнутом ключе протекает ток, пропорциональный падению напряжения на нём. В результате резистор рассеивает часть энергии в виде тепла, а это влечёт за собой снижение КПД. Для устранения этого недостатка вместо балластного резистора в импульсных схемах применяются индуктивные элементы – дроссели и импульсные трансформаторы.

Дроссель ограничивает нарастание тока по переднему (нарастающему) фронту импульса. От момента включения дросселя в цепь до полного магнитного насыщения сердечника, в нём запасается энергия в виде магнитного поля. После полного насыщения сердечника, даже если ток продолжает нарастать, дроссель не способен запасать больше энергии, в результате энергия начинает выделяться в виде тепла, что может вызвать потери и снизить КПД. Поэтому схему необходимо рассчитывать так, чтобы наибольшая длительность импульса ограничивалась до момента полного насыщения. При разрыве цепи дросселя по заднему (нисходящему) фронту импульса, магнитное поле дросселя в результате прекращения протекания тока быстро уменьшается. Уменьшение магнитного поля обуславливает возникновение на концах обмотки дросселя импульса напряжения магнитной индукции противоположной полярности, по отношению к приложенному напряжению во время протекания через обмотку дросселя тока. Это напряжение можно коммутировать таким образом, чтобы использовать энергию импульса для питания нагрузки. Так дроссель, ограничивая, ток накапливает энергию, а между импульсами может накопленную энергию передать нагрузке, или вернуть первичному источнику. В результате сокращаются потери энергии при значительном понижении выходного напряжения относительно входного, даже при питании мощной нагрузки.

Появление импульса обратной ЭДС в обмотке дросселя можно использовать не только для повышения КПД устройства при ограничении напряжения, но и для повышения выходного напряжения относительно входного.

Недостатком дроссельных преобразователей является невозможность гальванической развязки выхода от первичного источника питающего напряжения. Гальваническая развязка может быть обеспечена с применением импульсных трансформаторов с раздельными обмотками первичного (питающего) и вторичного напряжений. Трансформаторные схемы могут работать как в однотактном режиме (режим дросселя), так и в двухтактном.

Типовые схемы каскадов импульсных преобразователей с применением индуктивных элементов – дросселей и импульсных трансформаторов

Схемы выходных каскадов однотактных преобразователей постоянного напряжения с применением дросселя
Понижающий дроссельный преобразователь постоянного напряжения

На рисунке 9 показан выходной каскад. SA1 – ключ, управляемый схемой. При включении ключа в первоначальный момент времени к дросселю прикладывается разница напряжения источника питания относительно напряжения выхода. Затем, по мере намагничивания дросселя, ток через него постепенно возрастает, а падение напряжения на нём наоборот уменьшается. При протекании тока через дроссель фильтрующий конденсатор C1 заряжается, а дроссель накапливает энергию в магнитном поле сердечника. При размыкании ключа на концах обмотки L1 возникает импульс обратного напряжения. При появлении обратной ЭДС в дросселе, импульсный диод DV1 коммутирует освободившийся вывод его обмотки с минусом C1. В результате запасённая энергия в магнитном поле дросселя не теряется, а тратится на дополнительный заряд фильтрующего выходного конденсатора в промежутках между импульсами.

Повышающий дроссельный преобразователь постоянного напряжения

При подключении схемы (рисунок 10) к первичному источнику постоянного напряжения, конденсатор C1 через дроссель L1 и импульсный диод (диод Шоттки) DV1 заряжается. Напряжение на нём достигает напряжения источника питания, за вычетом падения напряжений на дросселе и диоде.

Дроссель рассчитывается так, чтобы при разомкнутом ключе SA1 при работе на нагрузку, ток нагрузки не приводил к значительному насыщению сердечника дросселя.

При замыкании ключа SA1 к дросселю прикладывается напряжение источника питания, ток через него увеличивается, а в сердечнике накапливается энергия магнитного поля до момента полного насыщения. Диод VD1 при замыкании ключа под действием обратного напряжения закрывается, исключая замыкание конденсатора C1.

После некоторого насыщения сердечника ключ размыкается.

В момент размыкания ключа на дросселе возникает импульс напряжения обратной полярности. На аноде разделительного диода появляется напряжение равное сумме напряжений первичного источника питания и напряжения импульса на дросселе. Диод открывается и конденсатор C1 заряжается.

Благодаря тому, что в момент размыкания ключа напряжение обратного импульса дросселя создаёт прибавку к напряжению первичного источника, на выходе преобразователя мы можем получить напряжение, превышающее напряжение первичного источника.

На основе этой схемы можно строить преобразователи с регулируемым напряжением выхода, но регулировка возможна только от напряжения первичного источника, что ограничивает область применения данного решения.

Пример транзисторных схем выходных каскадов дроссельных преобразователей

Для проведения опытов по рассмотренным видам дроссельных преобразователей можно собрать схемы каскадов на транзисторах, показанных на рисунках 11 и 12.

Ненасыщающийся импульсный трансформатор

При подаче на трансформатор однополярных импульсов напряжения, из-за крутой характеристики петли гистерезиса, остаточная напряжённость в сердечнике не снимается, и с каждым следующим импульсом достигает такого значения, при котором изменение напряжённости магнитного поля от начала до конца импульса становится несущественным. Поскольку передача энергии в трансформаторе осуществляется изменяющимся магнитным полем, величина которого значительно снижается при одностороннем намагничивании сердечника, снижается количество энергии, которое трансформатор способен передать за один рабочий период, т.е. его эффективность. В таких случаях иногда говорят, что трансформатор насыщается постоянной составляющей тока намагничивания .

По своей сути, трансформатор с разомкнутым магнитопроводом является дросселем, с наличием вторичных обмоток.

В работе однотактных преобразователей выделяют две фазы цикла:

  1. возбуждение ЭДС взаимной индукции во вторичной обмотке в ходе увеличения напряжённости магнитного потока при увеличивающемся первичном токе (намагничивание сердечника);
  2. возбуждение ЭДС взаимной индукции во вторичной обмотке в ходе спада напряжённости магнитного потока при сбросе первичного тока (размагничивание сердечника).

Снимать полезную мощность со вторичной обмотки целесообразно либо в первую фазу цикла, либо во вторую. При полезной нагрузке вторичной обмотки в первую фазу преобразователь называется «прямоходовым», во вторую – «обратноходовым».

Прямоходовый преобразователь с применением ненасыщающегося импульсного трансформатора

На рисунке 13 изображена схема силового каскада прямоходового импульсного преобразователя.

Когда при подаче управляющего импульса ключ VT1 открывается, к первичной обмотке T1 прикладывается напряжение питания. Ток первичной обмотки начинает увеличиваться по мере насыщения сердечника. В это время увеличивающийся магнитный поток сердечника вызывает индукцию напряжения на вторичной обмотке такой полярности, при которой импульсный диод VD1 открывается, заряжая конденсатор C1 и питая нагрузку.

Когда ключ VT1 закрывается, через первичную обмотку прекращает течь ток, в результате чего напряжённость магнитного поля начинает изменяться в обратную сторону, то есть уменьшаться. Уменьшение напряжённости магнитного потока сердечника индуцирует во вторичной обмотке напряжение обратной полярности, при котором диод VD1 закрывается. Обе обмотки оказываются не нагруженными, и в результате на концах всех обмоток может возникнуть импульс напряжения, в несколько раз превышающий по величине напряжение первичного источника. Этот импульс может вывести из строя и импульсный диод, если превысит его максимальное обратное напряжение, и транзисторный ключ. Поэтому такие схемы необходимо дополнять защитными цепями.

Способы защиты могут быть разнообразны, на рисунке показан лишь один из возможных вариантов. Здесь в момент появления импульса обратного напряжения его всплеск открывает демпфирующий диод VDд, в результате конденсатор демпфирующей цепочки Cд шунтирует первичную обмотку при прохождении крутого фронта импульса напряжения, а резистор Rд несколько снижает величину напряжения всего импульса.

Обратноходовый преобразователь с применением ненасыщающегося импульсного трансформатора

Схема на рисунке 14 повторяет схему на рисунке 13. Разница в том, что у вторичной обмотки произведена смена выводов. Если Вы уже обратили внимание на знаки «*» у изображений обмоток Т1, то многие из Вас догадались, что это условное обозначение начала обмоток.

Теперь, при открывании ключа в первичной обмотке начнёт увеличиваться ток c намагничиванием сердечника, но во вторичной обмотке индуцированное напряжение закроет диод VD1, и вся энергия (за исключением потерь) передаваемая через первичную обмотку будет накапливаться в магнитном поле сердечника до его полного насыщения. При запирании ключа, через первичную обмотку прекращает течь ток, а во вторичной индуцируется напряжение обратной полярности, которое открывает диод VD1, заряжая конденсатор C1 и питая нагрузку.

В этом случае у нас полезная нагрузка снимается со вторичной обмотки в период размагничивания сердечника, во время обратного хода цикла работы преобразователя. Отсюда и название – «обратноходовый».

Фаза обратного хода при постоянной нагрузке такого преобразователя активна, и в первичной обмотке не должно возникать опасных всплесков напряжения при размыкании первичной цепи. Но когда нагрузка имеет переменный характер, то при работе в режиме холостого хода ключ может выйти из строя. Для этого рассмотренную схему необходимо дополнить цепочкой защиты, аналогично схеме рисунка 13.

Рассмотренные выше схемы каскадов однотактных преобразователей пригодны лишь в диапазоне малых мощностей, приблизительно до 100 ВА.

Схемы выходных каскадов двухтактных преобразователей постоянного напряжения с применением импульсных трансформаторов

Силовые трансформаторы являются ключевым элементом устройств преобразования питающего напряжения. Как мы уже говорили, однотактные режимы работы накладывают значительные ограничения на их применение и эффективность. Для более полноценного использования всех полезных свойств импульсных трансформаторов, их применяют в схемах двухтактного преобразования . Это позволяет не только увеличить КПД, но и в значительной степени мощность преобразователя.

Рассмотрим три базовые схемы силовых каскадов двухтактных импульсных преобразователей.

Схема силового каскада двухтактного импульсного преобразователя с выводом средней точки первичной обмотки

В схеме на рисунке 15 используется импульсный трансформатор T1 с двумя первичными обмотками I и II, которые соединены последовательно, т.е. конец одной обмотки соединён с началом второй. Такое соединение образует среднюю точку, к которой подключается один из полюсов источника питания, в данном случае положительный. Свободные выводы первичных обмоток подключаются к противоположному полюсу источника питания через силовые коммутирующие ключи VT1 и VT2.

Полный цикл работы данной схемы заключается в поочерёдном включении обмоток I и II в цепь источника питания. Например, при открывании ключа VT1 обмотка I возбуждает в сердечнике магнитный поток определённой напряженности магнитного поля. При закрывании VT1 магнитный поток сердечника ослабляется до остаточной величины. Это первый такт работы. Далее, открывается ключ VT2, при этом через обмотку II начинает течь ток, создающий магнитный поток противоположного направления по отношению к первому такту. При этом сердечник успевает полностью размагнититься, а затем снова насытиться магнитным потоком обратной полярности. При закрытии ключа VT2 магнитный поток так же снижается до величины остаточного. Это второй такт работы преобразователя.

Работа в двухтактном режиме позволяет полноценно использовать преимущество импульсных трансформаторов, имеющих сердечники с высоким значением магнитной проницаемости, и не требует введения немагнитного зазора в цепь магнитопровода.

Если кратко изложить суть реализации двухтактного трансформаторного преобразования, это – периодическое изменение направления тока в первичной обмотке.

Полумостовая схема силового каскада двухтактного импульсного преобразователя

В полумостовой схеме (рисунок 16) ток в первичной обмотке создаётся путём перезарядки конденсаторов C2 и C3.

Пока оба ключа закрыты, после подачи питающего напряжения, конденсаторы верхнего и нижнего плеча полумоста C2 и C3 заряжаются приблизительно равномерно, и на общем выводе формируется напряжение, примерно равное половине напряжения питания.

При открывании ключа VT1 начало (помечено «*») первичной обмотки I оказывается подключено к положительному полюсу источника питания. При этом конденсатор С2 начинает разряжаться, а C3 заряжаться. Потенциал общей точки конденсаторов будет стремиться подтянуться к положительному полюсу первичного источника питания.

При закрывании VT1 и открывании VT2, начало обмотки переключается с положительного на отрицательный полюс первичного источника питания. При этом будет наблюдаться симметричный процесс ранее рассмотренному – C3 будет разряжаться, а C2 заряжаться. Их общая точка первичной обмоткой будет стремиться подтянуться к минусу питания.

В результате описанных выше двух тактов работы преобразователя, в первичной обмотке будет создаваться переменное направление электрического тока, он будет возбуждать переменный магнитный поток в сердечнике трансформатора, а поток индуцирует переменное напряжение на вторичной обмотке.

В моменты коммутации на выводах первичной обмотки могут возникать импульсы напряжения, способные вывести из строя ключи, поэтому в целях защиты оба ключа шунтируются защитными диодами VD1 и VD2.

Мостовая схема силового каскада двухтактного импульсного преобразователя

Мостовая схема (мост) представляет из себя четыре плеча, сформированных ключами VT1-VT4. Мост имеет две диагонали. Одна диагональ подключается к первичному источнику питания. Ко второй диагонали подключена первичная обмотка I импульсного трансформатора T1.

Для создания первичной обмоткой переменного магнитного потока в сердечнике трансформатора производится поочерёдная коммутация пар ключей VT1, VT4 и VT2, VT3.

Защитные диоды VD1, VD2, VD5 и VD6 при возникновении коммутационных импульсов на первичной обмотке коммутируют её таким образом, что не снятая нагрузкой энергия магнитного поля возвращается к первичному источнику питания.

Мертвое время (пауза)

При снятии управляющего сигнала транзистору требуется некоторое время, чтобы полностью закрыться. Если ключ (пара ключей в мостовой схеме) ещё не закрыт, или закрыт не до конца, а второй ключ (пара ключей) открывается, то источник первичного питания оказывается шунтированным созданной цепью открытых ключей. При этом транзисторы будут выделять значительное количество тепла, работать в режиме перегрузок, или могут даже выйти из строя. Чтобы этого не случилось, между тактами включения вводят специальную паузу – время необходимое для полного запирания ключей, отработавших в завершённом такте. Это время называют «мёртвой паузой», или «мёртвым временем».

Режимы регулирования и стабилизации

Для всех рассмотренных схем импульсных преобразователей характерен общий принцип организации процесса регулирования и стабилизации выходных параметров – импульсная модуляция . На рисунке 18 представлена структурная схема организации процесса преобразования с контролем выходного напряжения и тока.

Первичный источник питания ПИ снабжает энергией схему импульсной модуляции СИМ и выходной каскад ВК. Схема импульсной модуляции формирует управляющий сигнал, передаваемый по каналу управления КУ. Выходной каскад ВК в результате преобразования питающего напряжения первичного источника ПИ выдаёт на нагрузку Н напряжение, контролируемое схемой контроля напряжения СКН. Ток нагрузки контролируется схемой контроля тока СКТ. Схемы контроля по каналам обратной связи КОСТ и КОСН формируют информационные сигналы на входах схемы импульсной модуляции СИМ. На основании этих сигналов СИМ формирует необходимые характеристики управляющего сигнала, подаваемого по каналу управления КУ выходному каскаду ВК.

Данная структурная схема отражает наиболее сложный вариант преобразователя, способного контролировать и регулировать сразу несколько параметров, таких как ток, напряжение и мощность нагрузки. В отдельных случаях достаточно более простого исполнения. Например, там, где требуется только стабилизация напряжения, можно исключить схему контроля тока, скажем, для питания маломощного электронного устройства. Там, где требуется только контроль тока, можно исключить схему контроля напряжения, что обычно требуется при создании источников питания для светодиодных матриц. Полная же схема с контролем напряжения и тока может пригодиться для разработки зарядных устройств, когда требуется ограничить и ток, и максимально допустимое напряжение, или вообще создать более сложный алгоритм работы преобразования с помощью использования микроконтроллерных схем.

Заключение

В импульсной технике есть много нюансов, которые приходится учитывать при проектировании, но это уже более узкие темы, требующие рассмотрения в конкретных решениях. Приведённая информация является общей, ознакомительной. Невозможно в одной статье охватить всё разнообразие и экзотику схемотехники. Но какое бы устройство Вам не пришлось рассматривать, основополагающие принципы практически не меняются. Поэтому, усвоив азы Вы уверенно разберётесь в схемотехнике любой сложности.

С уважением, Михаил Сташков.