Защита от перенапряжения

Усилитель нч циклотрон на полевых транзисторах. Высококачественный узч на полевых транзисторах с компенсирующей обратной связью

Если громкость звука не самое важное, а предпочтение отдается качеству звучания, то этот УМЗЧ будет как раз кстати. Выходной каскад, выполненный по двухтактной схеме на комплементарной паре мощных полевых транзисторов с изолированным затвором обеспечивает качество звучания субъективно сродни «ламповому».

Да объективные характеристики весьма не плохи:

Усилитель звука на полевых транзисторах


Предварительная часть низкой частоты выполнена на А1. Сигнал с его выхода поступает на выходной двухтактный каскад на противоположных полевых транзисторах с изолированным затвором — 2SK1530 (n-канал) и 2SJ201 (р-канал). На затворах транзисторов создается необходимое напряжение смещения с помощью резисторов R8, R9 и диодов VD3 и VD4.

Диоды устраняют искажения «ступенька», создавая исходную разность потенциалов между затворами полевых транзисторов.Стабилизирующее напряжение ООС снимается с выхода выходного каскада и через цепь R4-C6 поступает на инверсный вход операционного усилителя А1, который является так же и входом УМЗЧ.

Коэффициент усиления по напряжению зависит от соотношения сопротивлений резисторов R1 и R4. Изменяя сопротивление R1 можно в достаточно широких пределах регулировать чувствительность этого УМЗЧ, приспособляя его под выходные параметры имеющегося предварительного УЗЧ. При этом следует знать, что, как обычно, увеличение чувствительности ведет в увеличению искажений. Так что здесь должен быть разумный компромисс.

Напряжение питания ±25В, можно использовать нестабилизированный источник, но обязательно хорошо отфильтрованный от пульсаций фона переменного тока. питается двуполярным напряжением ±18V от двух параметрических стабилизаторов на основе стабилитронов VD1 и VD2. Вместо транзистора 2SK1530 можно использовать более старые 2SK135, 2SK134, Вместо транзистора 2SJ201 можно использовать 2SJ49, 2SJ50.

Транзисторы должны быть установлены на теплоотвод. Транзисторы 2SK1530 и 2SJ201 имеют такую конструкцию корпуса, что радиаторной пластины, контактирующей с кристаллом у них нет, их корпус выполнен из керамо-пластика, хорошо проводящего тепло, но не проводящего электричества. Поэтому транзисторы можно установить на общий радиатор. Если же будут использованы транзисторы с радиаторными пластинами, имеющими электрический контакт с кристаллом, то необходимо их установить на разные радиаторы, изолированные друг от друга или использовать тщательное изолирование с помощью слюдяных прокладок.

В любом случае, между теплоотводящей поверхностью корпуса транзистора и радиатором должна быть теплопроводная паста, она закрывает неровности в соприкосновении корпуса транзистора и радиатора и так образом увеличивает реальную площадь соприкосновения, что способствует лучшему теплоотводу. Операционный NE5534 можно заменить практически любым ОУ, например, КР140УД608 или каким-то другим вариантом.Диоды 1N4148 можно заменить на КД522 или КД521.

Стабилитроны 1N4705 можно заменить любыми другими стабилитронами, рассчитанными на напряжение стабилизации 18В, либо каждый из них заменить двумя последовательно включенными стабилитронами, дающими в сумму 18В (например, 9В и 9В). Конденсаторы С1 и С4 должны быть на напряжение не ниже 35В, конденсаторы С7 и С8 на напряжение не ниже 50В. Несмотря на наличие электролитических конденсаторов С7 и С8 по питанию, на выходе источника питания должны быть конденсаторы значительно большей емкости чтобы обеспечить качественное подавление пульсаций переменного тока на выходе источника питания.

Монтаж выполнен на печатной плате из фольгированного стеклотекстолита с односторонним расположением печатных дорожек (рис.2). Способ изготовления печатной платы может быть любым доступным. Печатные дорожки не обязательно должны точно повторять форму показанных на рисунке, — важно чтобы обеспечивались необходимые соединения.

Последние сообщения

Популярные сообщения

Несколько слов об ошибках монтажа:
В целях улучшения читаемости схем расмотрим усилитель мощности с двумя парами оконечных полевых транзисторов и питании ±45 В.
В качестве первой ошибки попробуем "запаять" стабилитроны VD1 и VD2 не правильной полярностью (правильное включение показано на рисунке 11). Карта напряжений приобретет вид, показанный на рисунке 12.

Рисунок 11 Цоколевка стабилитронов BZX84C15 (впрочем и на диодах цоколевка такая же).



Рисунок 12 Карта напряжений усилителя мощности при неправильном монтаже стабилитронов VD1 и VD2.

Данные стабилитроны нужны для формирования напряжения питания операционного усилителя и выбраны на 15 В исключительно из за того, что это напряжение является для данного операционного усилителя оптимальным. Работоспособность без потери качества усилитель сохраняет и при использовании рядом стоящих по линейке номиналов - на 12 В, на 13 В, на 18 В (но не более 18 В ). При неправильном монтаже вместо положенного напряжения питания опреционный усилитель получает лишь напряжение падения на n-p переходе стаблитронов. Ток покая регулируется нормально, на выходе усилителя присутсвует небольшое постоянное напряжение, выходной сигнал отсутсвует.
Так же возможен не правильный монтаж диодов VD3 и VD4. В этом случае ток покоя ограничивается лишь номиналами резисторов R5, R6 и может достигать критической величины. Сигнал на выходе усилителя будет, но довольно быстрый нагрев оконечных транзисторов однозначно повлечет их перегрев и выход усилителя из строя. Карта напряжений и токов дляэтой ошибки показаны на рисунка 13 и 14.



Рисунок 13 Карта напряжений усилителя при неправильном монтаже диодов термостабилизации.



Рисунок 14 Карта токов усилителя при неправильном монтаже диодов термостабилизации.

Следующей популярной ошибкой монтажа может быть неправильный монтаж транзисторов предпоследнего каскада (драйверов). Карта напряжений усилителя в этом случае приобретает вид, показанный на рисунке 15. В этом случае транзисторы оконечного касада полностью закрыты и на выходе усилителя наблюдается отсутсвие каких либо признаков звука, а уровень постоянного напряжения максимально приближен к нулю.



Рисунок 15 Карта напряжений при неправильном монтаже транзисторов драйверного каскада.

Далее самая опасная ошибка - попутаны местами транзисторы драйверного каскада, причем цоколевка тоже попутана в следствии чего прилагаемое к выводам транзисторов VT1 и VT2 является верным и они работают в режиме эмиттерных повторителей. В этом случае ток через оконечный каскад зависит от положения движка подстроечного резистора и может быть от 10 до 15 А, что в любом случае вызовет перегрузку блока питания и быстрый разогрев оконечных транзисторов. На рисунке 16 показаны токи при среднем положении подстроечного резистора.



Рисунок 16 Карта токов при неправильном монтаже транзистров драйверного каскада, цоколевка тоже попутана.

Запаять "наоборот" вывода оконечных полевых транзисторов IRFP240 - IRFP9240 врядли получится, а вот поменять их местами получается довольно часто. В этом случае установленные в транзисторах диоды получаются в нелегкой ситуации - прилагаемое к ним напряжение имеет полярность соответсвующую их минимальному сопротивлению, что вызывает максимальное потребление от блока питания и как быстро они выгорят больше зависит от удачи чем от законов физики.
Фейверк на плате может случиться еще по одной причине - в продаже мелькают стабилитроны на 1,3 Вт в корпусе таком же как у диодов 1N4007, поэтому перед монтажом стабилитронов в плату, если они в черном корпусе стоит повнимательней ознакомиться с надписями на корпусе. При монтаже вместо стабилитронов диодов напряжение питания операционного усилителя ограничено лишь номиналами резисторов R3 и R4 и потребляемым током самого операционного усилителя. В любом случае получившаяся величина напряжения значительно больше максимального напряжения питания для данного ОУ, что влечет его выход из строя иногда с отстрелом части корпуса самого ОУ, ну а дальше возможно появление на его выходе постоянного напряжения, близкого в напряжению питания усилителя, что повлечет появление постоянного напряжения на выходе самого усилителя мощности. Как правило оконечный каскад в этом случае остается работоспособным.
Ну и на последок несколько слов о номиналах резисторов R3 и R4, которые зависят от от напряжения питания усилителя. 2,7 кОм является наиболее универсальным, однако при питании усилителя напряжением ±80 В (только на 8 Ом нагрузку) данные резисторы будут рассеивать порядка 1,5 Вт, поэтому его необходимо заменить на резистор 5,6 кОм или 6,2 кОм, что снизит выделяемую тепловую мощность до 0,7 Вт.

Внешний вид получившейся модификации усилителя мощности приведен на фотографиях ниже:




Осталось в эту бочку меда плескануть ложку дегтя...
Дело в том, что используемые в усилителе полевые транзисторы IRFP240 и IRFP9240 прекратила выпуск фирма разработчик International Rectifier (IR), которая прилагала больше внимания к качеству выпускаемой продукции. Основная проблема этих транзисторов - они разрабатывались для использования в источниках питания, но оказались вполне пригодными для звуковой усилительной аппаратуре. Повышенное внимание к качеству выпускамых компонентов со стороны International Rectifier позволяло не производя подбор транзисторов включать параллельно несколько транзисторов не беспокоясь об отличиях характеристик транзисторов - разброс не превышал 2%, что вполне приемлемо.
На сегодня транзисторы IRFP240 и IRFP9240 выпускаются фирмой Vishay Siliconix , которая не так трепетно относится к выпускаемой продукции и параметры транзисторов стали пригодными лишь для источников питания - разброс "коф усиления" транзисторов одной партии превышает 15%. Это исключает параллельное включение без предварительного отбора, а количество протестированных транзисторов для выбора 4 одинаковы переваливает несколько десятков экземпляров.
В связи с этим перед сборкой данного усилителя прежде всего следует выяснить какой фирмы транзисторы вы может достать. Если в Ваших магазинах в продаже Vishay Siliconix, то настоятельно рекомендуется отказаться от сборки данного усилителя мощности - Вы рискуете довольно серьезно потратиться и ни чего не добиться.
Однако и работа по разработке "ВЕРСИИ 2" этого усилителя мощности и отсутствие приличных и не дорогие полевых транзисторов для выходного каскада заставили немного поразмышлять над будущим этой схемотехники. В результате был смоделирована "ВЕРСИЯ 3", использующая вместо полевых транзисторов IRFP240 - IRFP9240 фирмы Vishay Siliconix биполярную пару от TOSHIBA - 2SA1943 - 2SC5200, которые на сегодня еще вполне приличного качества.
Принципиальная схема нового варианта усилителя вобрала доработки "ВЕРСИИ 2" и притерпела изменения в выходном каскаде, позволив отказаться от использования полевых транзисторов. Принципиальная схема приведена ниже:



Принципиальная схема с использованием полевых транзисторов в качестве повторителей УВЕЛИЧИТЬ

В данном варианте полевые транзисторы сохранились, но они используются в качестве повторителей напряжения, что существенно разгружает драйверный каскад. В систему защиты введена небольшая положительная связь, позволяющая избежать возбуждение усилителя мощности на границе срабатывания защиты.
Печатная плата в процессе разработки, орентировочно результаты реальных измерении и работоспособная печатная плата появятся в конце ноября, а пока можно предложить график измерения THD, полученный МИКРОКАП. Подробнее о данной программе можно почитать .

Технические характеристики
Максимальная среднеквадратичная мощность:
при RH = 4 Ом, Вт 60
при RH = 8 Ом, Вт 32
Рабочий диапазон частот. Гц 15...100 000
Коэффициент нелинейных искажений:
при f = 1 кГц, Рвых = 60 Вт, RH = 4 Ом, % 0,15
при f = 1 кГц, Рвых = 32 Вт, RH = 8 Ом, % 0,08
Коэффициент усиления, дБ 25...40
Входной импеданс, кОм 47

Настройка

Маловероятно, что какой-либо опытный экспериментатор буде иметь трудности при достижении удовлетворительных результатов при построении усилителя по этой схеме. Главные проблемы, которые следует предусмотреть - это неправильная установка элементов и повреждение МОП транзисторов при неправильном обращении с ними или при возбуждении схемы. В качестве руководства дл экспериментатора предлагается следующий перечень контрольных проверок для поиска неисправностей:
1. При сборке печатной платы сначала установите пассивные элементы и убедитесь в правильном включении полярности электролитических конденсаторов. Затем установите транзисторы VT1 ...VT4. И, наконец, установите МОП транзисторы, избегая статического заряда, замыкая одновременно выводы на землю и используя заземленный паяльник. Проверьте собранную плату на правильность установки элементов. Для этого будет полезно пользоваться расположением элементов, показанном на рис. 2 Проверьте печатные платы на отсутствие замыканий припоем дорожек и, если они есть, удалите их. Проверьте узлы паек визуально и электрически с помощью мультиметра и переделайте, если это необходимо.
2. Теперь на усилитель может быть подано напряжение питания и выставлен ток покоя выходного каскада (50...100 мА). Потенциометр R12 сначала устанавливается по минимальному току покоя (до отказа против часовой стрелки на топологии платы рис. 2). положительную ветвь питания включается амперметр с пределом измерения 1 А. Вращением движка резистора R12 добиваются показаний амперметра 50...100 мА. Установка тока покоя может быть выполнена без подключения нагрузки. Однако, если нагрузочный динамик включен в схему, он должен быть защищен предохранителем от перегрузки по постоянному току. При установленном токе покоя приемлемое значение выходного напряжения смещения должно быть меньше 100 мВ.

Излишние или беспорядочные изменения тока покоя при регулировке R12 указывают на возникновение генерации в схеме или неправильное соединение элементов. Следует придерживаться рекомендаций, описанных ранее (последовательное включение в цепь затвора резисторов, минимизация длины соединительных проводников, общее заземление). Кроме того, конденсаторы развязки по питанию должны устанавливаться в непосредственной близости) к выходному каскаду усилителя и точке заземления нагрузки. Во избежание перегрева мощных транзисторов регулирование тока покоя должно выполняться при установленных на теплоотводе МОП транзисторах.
3.После установления тока покоя амперметр должен быть удален
из цепи положительного питания и на вход усилителя может быть
подан рабочий сигнал. Уровень входного сигнала для получения полной номинальной мощности должен быть следующим:
UBX = 150 мВ (RH = 4 Ом, Ки = 100);
UBX= 160 мВ (RH = 8 Ом, Ки = 100);
UBX = 770 мВ (RH = 4 Ом, Ки = 20);
UBX = 800 мВ (RH = 8 Ом, Ки = 20).
"Подрезание" на пиках выходного сигнала при работе с номинальной мощностью указывает на плохую стабилизацию напряжения питания и может быть исправлено снижением амплитуды входного сигнала и уменьшением номинальных характеристик усилителя.
Амплитудно-частотная характеристика усилителя может быть проверена в диапазоне частот 15 Гц... 100 кГц с помощью набора для звукового тестирования или генератора и осциллографа. Искажение выходного сигнала на высоких частотах указывает на реактивный характер нагрузки и для восстановления формы сигнала потребуется подбор величины индуктивности выходного дросселя L1. Амплитудно-частотная характеристика на высоких частотах может быть выровнена с помощью компенсационного конденсатора, включенного параллельно с R6. Низкочастотная часть амплитудно-частотной характеристики корректируется элементами R7, С2.
4.Наличие фона (гудения) вероятнее всего происходит в схеме
при установке слишком высокого усиления. Наводка на входе с высоким
импедансом минимизируется использованием экранированного
кабеля, заземленного непосредственно в источнике сигнала. Низкочастотные пульсации питания, попадающие с питанием во входной каскад
усилителя, могут быть устранены конденсатором СЗ. Дополнительное
ослабление фона осуществляется дифференциальным каскадом
на транзисторах VT1, VT2 предусилителя. Jднако, если источником фона является питающее напряжение, то можно подобрать значение СЗ, R5 для подавления амплитуды пульсаций.
5. В случае выхода из строя транзисторов выходного каскада из-за короткого замыкания в нагрузке или из-за высокочастотной генерации необходимо заменить оба МОП транзистора, при этом маловероятно, чтобы из строя вышли другие элементы. При установке схему новых приборов процедура настройки должна быть повторена.

Схема блока питания


Лучшие конструкции "Радиолюбителя" Выпуск 2

Схема усилителя с изменениями:



Усилители на полевых транзисторах (ПТ) обладают большим входным сопротивлением. Обычно такие усилители используются как первые каскады предварительных усилителей, усилителей постоянного тока измерительной и другой радиоэлектронной аппаратуры.
Применение в первых каскадах усилителей с большим входным сопротивлением позволяет согласовывать источники сигнала с большим внутренним сопротивлением с последующими более мощными усилительными каскадами, имеющими небольшое входное сопротивление. Усилительные каскады на полевых транзисторах чаще всего выполняются по схеме с общим истоком.

Так как напряжение смещения между затвором и истоком равно нулю, то режим покоя транзистора VT характеризуется положением точки А на сток-затворной характеристике при U ЗИ =0 (рис. 15,б).
В этом случае при поступлении на вход усилителя переменного гармонического (то есть синусоидального) напряжения U ЗИ с амплитудой U mЗИ положительный и отрицательный полупериоды этого напряжения будут усиливаться неодинаково: при отрицательном полупериоде входного напряжения U ЗИ амплитуда переменной составляющей тока стока I" mc будет больше, чем при положительном полупериоде (I"" mc), так как крутизна сток-затворной характеристики на участке АВ больше по сравнению с крутизной на участке АС: Вследствие этого форма переменной составляющей тока стока и создаваемого им переменного напряжения на нагрузке U ВЫХ будет отличаться от формы входного напряжения, то есть возникнут искажения усиливаемого сигнала.
Для уменьшения искажений сигнала при его усилении необходимо обеспечить работу полевого транзистора при постоянной крутизне его сток-затворной характеристики, то есть на линейном участке этой характеристики.
С этой целью в цепь истока включают резистор Rи (рис.16,а).



Протекающий через резистор ток стока I С0 создает на нем напряжение
U Rи =I С0 Rи, которое прикладывается между истоком и затвором, включая ЭДП, образованный между областями затвора и истока, в обратном направлении. Это приводит к уменьшению тока стока и режим работы будет характеризоваться в этом случае точкой А" (рис.16,б).

Чтобы не происходило уменьшения коэффициента усиления, параллельно резистору Rи подключают конденсатор Си большой емкости, который устраняет отрицательную обратную связь по переменному току, образуемую переменным напряжением на резисторе Rи. В режиме, характеризуемом точкой А", крутизна сток-затворной характеристики при усилении переменного напряжения остается примерно одинаковой при усилении положительных и отрицательных полупериодов входного напряжения, вследствие чего искажения усиливаемых сигналов будут незначительны
(участки A"В" и А"С" примерно равны).
Если в режиме покоя напряжение между затвором и истоком обозначить U ЗИО, а протекающий через ПТ ток стока I С0 , то сопротивление резистора Rи (в омах) можно рассчитать по формуле:
Rи =1000 U ЗИО /I С0 ,
в которую ток стока I С0 подставляется в миллиамперах.
В схеме усилителя, приведенной на рис.15, используется ПТ с управляющим p-n-переходом и каналом р-типа. Если в качестве ПТ применяется аналогичный транзистор, но с каналом n-типа, схема остается прежней, а изменяется лишь полярность подключения источника питания.
Еще большее входное сопротивление имеют усилители, выполненные на полевых МДП-транзисторах с индуцированным, или встроенным каналом. При постоянном токе входное сопротивление таких усилителей может превышать 100 МОм. Так как напряжения их затвора и стока имеют одинаковую полярность, для обеспечения необходимого напряжения смещения в цепи затвора можно использовать напряжение источника питания G C подключив его к делителю напряжения, включенному на входе транзистора таким образом, как показано на рис.17.

Усилители с общим стоком

Схема усилителя на ПТ с общим стоком аналогична схеме усилителя с общим коллектором. На рис.18,а приведена схема усилители с общим стоком на ПТ с управляющим р-n-переходом и каналом р-типа.


Резистор Rи включен в цепь истока, а сток прямо подключен к отрицательному полюсу источника питания. Поэтому ток стока, зависящий от входного напряжения, создает падение напряжения только на резисторе Rи. Работа каскада поясняется графиками, приведенными на рис.18,б для случая, когда входное напряжение имеет синусоидальную форму. В исходном состоянии через транзистор протекает ток стока I С0 , который на резисторе Rи создает напряжение U И0 (U ВЫХ0). В течение положительного полупериода входного напряжения обратное смещение между затвором и истоком увеличивается, что приводит к уменьшению тока стока и абсолютной величины напряжения на резисторе Rи. В отрицательный полупериод входного напряжения, наоборот, напряжение смещения затвора уменьшается, ток стока и абсолютная величина напряжения на резисторе Rи увеличиваются. Вследствие этого выходное напряжение, снимаемое с резистора Rи, т. е. с истока ПТ (рис.18,б), имеет такую же форму, что и входное напряжение.
В связи с этим усилители с общим стоком получили название истоковых повторителей (напряжение истока по форме и значению повторяет входное напряжение).

Высококачественный УЗЧ на полевых транзисторах с компенсирующей обратной связью

Сегодня уже трудно удивить любителей высококачественного звуковоспроизведения или умеющих держать в руках паяльник конструкторов усилителем на полевых транзисторах. Большинство таких аппаратов, даже лучших мировых образцов, построены по традиционной схеме с дифференциальным входным каскадом и множеством дополнительных элементов, не принимающих участия в усилении сигнала, но обеспечивающих временную и температурную стабильность. Не изменило коренным образом традиционных схемных решений и применение в выходных каскадах мощных комплементарных транзисторов с разными типами проводимости канала.

В результате активных творческих поисков и сознательного ухода от многочисленных доминирующих стереотипных схемных решений мне удалось создать свой собственный оригинальный прототип усилителя, имеющего минимальное количество электронных компонентов и обладающего исключительной стабильностью, надёжностью и высокими техническими характеристиками, способными удовлетворить запросы даже самых искушённых музыкальных гурманов.

Основные параметры усилителя при сопротивлении нагрузки 8 Ом приведены в таблице.

Параметр

Значение

Коэффициент усиления по напряжению

Максимальная выходная мощность

Скорость нарастания выходного напряжения

Диапазон воспроизводимых частот

20 – 3 0000

Нестабильность средней точки

Напряжение выходных шумов

Коэффициент нелинейных искажений

При разработке усилителя особое внимание было обращено на качественные показатели, максимальный КПД и минимальное количество используемых деталей, что дало возможность существенно повысить его надёжность и упростить повторение. Учитывалось также наличие и доступность деталей в торговой сети, что значительно снизило себестоимость усилителя.

Усилитель (смотри схему) состоит из входного каскада на маломощных полевых транзисторах разного типа проводимости VT1 и VT2 включённых по схеме с общим истоком, нагрузкой которых являются резисторы R2 и R3. Резистор R1 соединяет затворы этих транзисторов с землёй и определяет входное сопротивление усилителя, а совместно с ёмкостью входного разделительного конденсатора C1 задаёт его частотную характеристику в низкочастотной области звукового спектра. Транзисторы VT3 и VT4 включены по схеме с общими базами, напряжение на которых задаётся стабилитронами VD1 и VD2, и обеспечивают развязку входных транзисторов от переменной составляющей их выходного сигнала, а также снижают излишнее постоянное питающее напряжение на их стоках. Транзисторы VT5 и VT6 включены по схеме с общим коллектором, их переходы база-эмиттер являются элементами смещения для транзисторов VT1 и VT2, а изменение постоянного напряжения на базах, связанных через резисторы R7 и R10 с выходом усилителя, компенсирует произвольный уход средней точки и рост тока покоя. Падение постоянного напряжения на резисторах R2 и R3 открывает мощные выходные транзисторы VT7 и VT8 на величину начального тока стока (тока покоя), определяющего работу усилителя в классе AB.


Схема усилителя работает следующим образом. Положительная полуволна входного сигнала через конденсатор C1 проходит на затвор транзистора VT1 и вызывает увеличение его тока стока, в результате чего увеличивается падение напряжения на резисторе R2, что приводит к отпиранию транзистора VT7 и появлению положительной полуволны сигнала на выходе усилителя. Через делитель напряжения на элементах R7, C2, R8, задающий коэффициент усиления всего усилителя, и эмиттерный повторитель на транзисторе VT5 часть выходного сигнала подаётся в исток транзистора VT1, действуя как отрицательная обратная связь, компенсирующая нелинейные искажения огибающей сигнала, а снимаемое с резистора R11 постоянное напряжение стабилизирует ток покоя и среднюю точку. Усиление отрицательной полуволны входного сигнала и стабилизация параметров происходит аналогичным образом в нижней, симметричной верхней, половине схемы. Резисторы R4 и R5 вместе с входными ёмкостями транзисторов VT7 и VT8 образуют фильтры нижних частот, ограничивающие полосу пропускания усилителя и устраняющие его самовозбуждение.

Монтаж усилитель производится на печатной плате из одностороннего фольгированного стеклотекстолита размером 115 ´ 63 мм и толщиной 2 – 3 мм. Ниже показан рисунок печатной платы со стороны дорожек.


Налаживание усилителя сводится к установке подстроечными резисторами R2 и R3 тока покоя через выходные транзисторы, а также нулевого напряжения на выходе усилителя (средней точки). Для этого резисторы R2 и R3 устанавливают в среднее положение, выход усилителя нагружают на маломощную лампу накаливания напряжением 24В и подают напряжение питания. При этом лампа светиться не должна, что говорит о правильном монтаже и исправных деталях. Попеременно и плавно вращая оба подстроечных резистора в сторону увеличения их номинала, добиваются появления тока через транзисторы VT7 и VT8 который контролируют цифровым милливольтметром по падению напряжения на резисторе R11 или R12. Значение этого напряжения должно быть в пределах 15 – 20 mV, что соответствует току покоя 75 – 100 mA. Если средняя точка на выходе усилителя смещена в сторону плюса, её устанавливают подстроечным резистором R2, если она смещена в сторону минуса, её устанавливают подстроечным резистором R3. Снова контролируют ток покоя выходных транзисторов и при необходимости повторяют операцию ещё раз.

Усилитель сохраняет свою работоспособность при напряжении питания от ±15 до ±30 Вольт. Необходимо лишь применять блок питания на ток не менее 5 Ампер, стабилитроны VD 1 и VD 2 на напряжение равное половине питающих, конденсаторы C5 и C6 на соответствующее рабочее напряжение, а при постоянной работе усилителя на максимальную отдачу следует увеличить мощность резисторов R11 и R12 до 5 Ватт.

Входные транзисторы VT1 и VT2 должны иметь равные или близкие начальные токи стока IDSS . Выходные транзисторы VT7 и VT8 необходимо подобрать с близким напряжением открывания канала VGS(to) которое для этого типа транзисторов может составлять от 3 до 4 Вольт. Это можно сделать непосредственно при покупке, договорившись с продавцом и применив простое самодельное или промышленное устройство. Хорошо паруются типы транзисторов, указанные на схеме, их необходимо устанавливать на радиаторы, имеющие соответствующую мощности площадь, через специальные изоляционные прокладки. Резисторы R2 и R3 многооборотные прецизионные типа СП3-39А, СП5-2 или подобные. Электролитические конденсаторы C2 и C3 применены неполярного типа, при использовании импульсного блока питания конденсаторы C5 и C6 следует зашунтировать безындукционными конденсаторами ёмкостью 0,1 – 1,0 мкФ. Резисторы R11 и R12 непроволочные типа Fuse, обрывающиеся при перегрузке.

Одна из главных особенностей схемы усилителя состоит в том, что выходной сигнал, усиленный мощными транзисторами, снимается с их стоков, которые не являются управляющими электродами. Это позволило значительно снизить специфические искажения, вызываемые воздействием противо-ЭДС звуковой катушки громкоговорителя на выходные транзисторы, если сигнал снимается с их истоков или эмиттеров. Таким образом, данный усилитель по принципу работы приравнивается к ламповому, однако значительно превосходит его по экономичности, ширине полосы воспроизводимых частот, быстродействию и надёжности, не говоря уже о искажениях и затратах на комплектующие.

Важным свойством полевых транзисторов является то, что при перегреве проводимость их канала уменьшается, соответственно падает крутизна характеристики и ток стока, что автоматически защищает их от теплового пробоя. Ещё одно свойство полевых транзисторов, применённых в выходном каскаде усилителя, это их квадратичная переходная характеристика, которая способствует уменьшению нелинейных искажений при больших уровнях выходной мощности. Чем выше ток через транзисторы VT7 и VT8, тем большими становятся их крутизна характеристики и коэффициент усиления, и тем более глубокой оказывается отрицательная обратная связь.

При включении усилителя в сеть, до момента достижения половины питающего напряжения на конденсаторах C5 и C6 стабилитроны VD1 и VD2 оказываются запертыми, а вместе с ними все транзисторы, отпирание которых происходит плавно и одновременно в обеих половинах схемы, что полностью устраняет характерный для многих подобных конструкций неприятный хлопок в громкоговорителе. По этой причине усилителю не страшны аварийные выключения и включения питающего напряжения даже во время работы на полной выходной мощности.

Усилитель был испытан в работе с разными источниками сигнала, при разных температурах окружающей среды, и показал свою высокую надёжность, отличные выходные и динамические характеристики, и рекомендуется для повторения любителям высококачественного домашнего или профессионального звуковоспроизведения. Блок регулировки громкости, тембров и баланса можно выполнить по схеме, приведённой на сайте http://cxem.net/sound/tembrs/tembr14.php с использованием специализированной микросхемы TDA1524A. При необходимости в схему можно добавить также усилитель микрофонного сигнала, выполненного по любой известной схеме. Расположение деталей на плате усилителя показано на рисунке ниже.


Увеличить линейность усилителя и ещё больше снизить коэффициент нелинейных искажений можно параллельным включением в каждое плечо двух выходных транзисторов и юстировкой (подгонкой номинала) одного из резисторов R 8 или R 9 в цепи обратной связи. Если удалить переходной конденсатор C 1 схему можно превратить в мощный линейный усилитель постоянного тока для систем автоматики, телемеханики и управления.

Юрко Стрелков-Серга
а/я 5000 Винница-18
[email protected]