Заземление

Какой трехфазный источник называют симметричным. Токи фазные и линейные

В настоящее время во всём мире получила широчайшее распространение так называемая трехфазная система переменного тока, изобретённая и разработанная в 1888 г. русским электротехником Доливо-Добровольским. Он первым сконструировал и построил трехфазный генератор, трехфазный асинхронный электродвигатель и трехфазную линию электропередачи. Эта система обеспечивает наиболее выгодные условия передачи электрической энергии по проводам и позволяет построить простые по устройству и удобные в работе электродвигатели.

Трехфазной системой электрических цепей называют систему, состоящую из трёх цепей, в которых действуют переменные ЭДС одной и той же частоты, сдвинутые по фазе друг относительно друга на 1/3 периода (j=120°). Каждую цепь такой системы называют фазой, а систему трех сдвинутых по фазе переменных токов в таких цепях называют трёхфазным током.

Поддержание постоянного сдвига по фазе между колебаниями напряжений на выходе трёх независимых генераторов является довольно сложной технической задачей. На практике для получения трёх токов, сдвинутых по фазе, используются трехфазные генераторы. Индуктором в генераторе служит электромагнит, обмотка которого питается постоянным током. Индуктор является ротором, а якорь генератора-статором. Каждая обмотка генератора является самостоятельным генератором тока. Присоединив провода к концам каждой из них, как это показано на рисунке, мы получили бы три независимые цепи, каждая из которых могла бы питать энергией те или иные приемники, например электрические лампы. В этом случае для передачи всей энергии, которую поглощают приемники, требовалось бы шесть проводов. Можно, однако, так соединить между собой обмотки генератора трехфазного тока, чтобы обойтись четырьмя и даже тремя проводами, то есть значительно сэкономить проводку.
раз.
3
Первый из этих способов называется соединением звездой. При нём все концы фазных обмоток X, Y, Z соединяются в общий узел О (его называют нейтральной или нулевой точкой генератора), а начала служат зажимами для подключения нагрузки. Напряжение между нулевой точкой и началом каждой фазы называют фазным напряжением ( U ф ) , а напряжение между началами обмоток, то есть точками А и В, В и С, С и А, называют линейным напряжением ( U л ). При этом действующее значение линейного напряжения превышает действующее значение фазного напряжения в

В случае равномерной нагрузки всех трёх фаз ток в нулевом проводе равен нулю и его можно не использовать. При несимметричной нагрузке ток в нулевом проводе не равен нулю, но значительно слабее, чем ток в линейных проводах. Поэтому нулевой провод может быть тоньше, чем фазовые.

Обмотки трёхфазного генератора можно соединять треугольником. При этом конец каждой обмотки соединен с началом следующей, так что они образуют замкнутый треугольник, а линейные провода присоединены к вершинам

этого треугольника-точкам А, В и С. Легко заметить, что при соединении треугольником линейное напряжение генератора равно его фазовому напряжению. Следовательно, для получения нужного линейного напряжения каждая обмотка генератора должна быть рассчитана на большее напряжение, чем в случае соединения обмоток генератора звездой. Это приводит к удорожанию генератора. Кроме того, нагрузка редко бывает совершенно симметричной. В связи с этим обмотки генератора, как правило, соединяют звездой.

Список используемой литературы.

1. Г. С. Ландсберг «Элементарный учебник физики».

2. А. А. Пинский «Физика-11».

Трехфазный генератор имеет на статоре три однофазные самостоятельные обмотки, начала и концы которых сдвинуты соответственно на 120 эл. град, или на 2/3 полюсного деления, т. е на 2/3 расстояния между серединами разноименных полюсов (рис. 1). В каждой из трех обмоток возникает однофазный переменный ток. Однофазные токи обмоток взаимно сдвинуты на 120 эл. град, т. е. на 2/3 периода. Таким образом, трехфазный ток представляет собой три однофазных тока, сдвинутых во времени на 2/3 периода (120°).

В любой момент времени алгебраическая сумма всех трех мгновенных: значений а. д. с. отдельных фаз равна нулю. Поэтому у генератора вместо шести выводов (для трех самостоятельных однофазных обмоток) делают только три вывода или четыре, когда выводится нулевая точка. В зависимости от того, как соединить отдельные фазы и как их подключить к сети, можно получить соединение в звезду или треугольник.

Начала обмоток обозначаются в дальнейшем буквами A, B, C, а концы их – буквами X, Y, Z.

Рис. 1.

При соединении в звезду концы фаз X, Y, Z (рис. 2) соединяют и узел соединения называют нулевой точкой. Узел может иметь вывод – так называемый нулевой провод (рис. 272), показанный пунктиром, или быть без вывода.

При соединении в звезду с нулевым проводом можно получить : линейное напряжение Uл между проводами отдельных фаз и фазное напряжение Uф между фазой и нулевым проводом (рис. 2). Соотношение между линейным и фазным напряжениями выражается следующим образом: Uл=Uф∙√3.

Рис. 2. Соединение в звезду

Ток, который проходит в проводе (сети), проходит и по обмотке фазы (рис. 2), т. е. Iл=Iф.

Соединение фаз в треугольник получается при соединении концов и начал фаз согласно рис. 3, т. е. AY, BZ, CX. При таком соединении нет нулевого провода и напряжение на фазе равно линейному напряжению между двумя проводами линии Uл=Uф. Однако ток в линии Iл (сети) больше, чем ток в фазе Iф, а именно: Iл=Iф∙√3.

Рис. 3. Соединение в треугольник

При трехфазной системе в каждое мгновение, если ток в одной обмотке идет от конца к началу, то в двух других он направлен от начала к концу. Например, на рис. 2 в средней обмотке AX проходит от A к X, а в крайних – от Y к B и от Z к C.

На схеме (рис. 4) показано, как три одинаковые обмотки соединяются с зажимами двигателя в звезду или треугольник.

Рис. 4. Соединение обмоток в звезду и треугольник

Примеры расчетов

1. Генератор с обмоткой статора, соединенной по представленной на рис. 5 схеме, при линейном напряжении 220 В питает током три одинаковые лампы сопротивлением по 153 Ом. Какие напряжение и ток имеет каждая лампа (рис. 5)?

Рис. 5.

Согласно включению лампы имеют фазное напряжение Uф=U/√3=220/1,732=127 В.

Ток лампы Iф=Uф/r=127/153=0,8 А.

2. Определить схему включения трех ламп на рис. 6, напряжение и ток каждой лампы сопротивлением по 500 Ом, подключенных к питающей сети с линейным напряжением 220 В.

Ток в лампе I=Uл/500=220/500=0,45 А.

Рис. 6.

3. Сколько вольт должен показывать вольтметр 1, если вольтметр 2 показывает напряжение 220 В (рис. 7)?

Рис. 7.

Фазное напряжение Uф=Uл/√3=220/1,73=127 В.

4. Какой ток показывает амперметр 1, если амперметр 2 показывает ток 20 А при соединении в треугольник (рис. 8)?

Рис. 8.

Iф=Iл/√3=20/1,73=11,55 А.

При соединении в треугольник ток в фазе потребителя меньше, чем в линии.

5. Какие напряжение и ток будут показывать измерительные приборы 2 и 3, включенные в фазу, если вольтметр 1 показывает 380 В, а сопротивление фазы потребителя 22 Ом (рис. 9)?

Рис. 9.

Вольтметр 2 показывает фазное напряжение Uф=Uл/√3=380/1,73=220 В. а амперметр 3 – фазный ток Iф=Uф/r=220/22=10 А.

6. Сколько ампер показывает амперметр 1, если сопротивление одной фазы потребителя 19 Ом с падением напряжения на нем 380 В, которое показывает вольтметр 2, включенный согласно рис. 10.

Рис. 10.

Ток в фазе Iф=Uф/r=Uл/r=380/19=20 А.

Ток потребителя по показанию амперметра 1 Iл=Iф∙√3=20∙1,73=34,6 А. (Фаза, т. е. сторона треугольника, может представлять собой обмотку машины, трансформатора или другое сопротивление.)

7. Асинхронный двигатель на рис. 2 имеет обмотку, соединенную в звезду, и включается в трехфазную сеть с линейным напряжением Uл=380 В. Каким будет фазное напряжение?

Фазное напряжение будет между нулевой точкой (зажимы X, Y, Z) и любыми из зажимов A, B, C:

Uф=Uл/√3=380/1,73=219,4≈220 В.

8. Обмотку асинхронного двигателя из предыдущего примера замкнем в треугольник, соединив зажимы на щитке двигателя согласно рис. 3 или 4. Амперметр, включенный в линейный провод, показал ток Iл=20 А. Какой ток проходит по обмотке (фазе) статора?

Линейный ток Iл=Iф∙√3; Iф=Iл/√3=20/1,73=11,56 А.

3.1.Основные определения.Трехфазная система ЭДС

Трехфазная цепь является совокупностью трех электрических цепей, в которых действуют синусоидальные ЭДС одинаковой частоты и амплитуды, сдвинутые относительно друг друга по фазе на 120 o . Участок трехфазной системы, по которому протекает одинаковый ток, называется фазой.

Трехфазная цепь состоит из трехфазного генератора, соединительных проводов и приемников или нагрузки, которые могут быть однофазными или трехфазными. Трехфазный генератор представляет собой синхронную машину. На статоре генератора размещена трехфазная обмотка, состоящая из трех обмоток, оси которых пространственно смещены относительно друг друга на 120 o . Магнитное поле в генераторе создается вращающимся ротором, на котором расположена обмотка возбуждения, питаемая постоянным током. По закону электромагнитной индукции в фазах генератора индуктируется симметричная трехфазная система ЭДС, в которой ЭДС одинаковы по величине и различаются по фазе на 120 o .

Трехфазные системы в настоящее время получили наибольшее распространение в энергетике. На трехфазном токе работают все крупные электростанции и потребители, что связано с рядом преимуществ трехфазных цепей перед однофазными, важнейшими из которых являются:

Экономичность передачи электроэнергии на большие расстояния;

Самым надежным и экономичным, удовлетворяющим требованиям промышленного электропривода является асинхронный двигатель с короткозамкнутым ротором;

Возможность получения с помощью неподвижных трехфазных обмоток вращающегося магнитного поля, на чем основана работа синхронного и асинхронного двигателей, а также ряда других электротехнических устройств;

Уравновешенность по мощности симметричных трехфазных систем, при которой суммарная мгновенная мощность всех фаз остается величиной постоянной и не зависящей от времени.

Многофазная система ЭДС (напряжений, токов) называется симметричной , если она состоит из m одинаковых по модулю векторов ЭДС (напряжений, токов), сдвинутых по фазе друг относительно друга на одинаковый угол . Трехфазную систему ЭДС обозначают следующим образом: -ЭДС с начальной фазой, - ЭДС, отстающую на 120 0 , - ЭДС, опережающую на 120 0 . Последовательность прохождения ЭДС через одинаковые значения (например, нулевые значения) называется последовательностью фаз .

Графики мгновенных значений (рис.3.1,а ) и соответствующие им изображения действующих значений трехфазной системы ЭДС на комплексной плоскости (рис.3.1,б ), описываются следующими уравнениями:

, , ;



Рис. 3.1

Комплексные значения фазных ЭДС симметричной трехфазной системы образуют симметричную звезду, и сумма их равна нулю:

Соответственно сумма мгновенных значений также в любой момент времени равна нулю

.

Схемы соединения трехфазных цепей

На схемах трехфазных цепей начала фаз обозначают первыми буквами латинского алфавита (А, В, С), а концы - последними буквами (X, Y, Z ). Направления ЭДС указывают от конца фазы обмотки генератора к ее началу. Каждая фаза нагрузки соединяется с фазой генератора двумя проводами: прямым и обратным. Получается несвязанная трехфазная система, в которой имеется шесть соединительных проводов. Чтобы уменьшить количество соединительных проводов, используют трехфазные цепи, соединенные звездой или треугольником. Если концы всех фаз генератора соединить в общий узел, а начала фаз соединить с нагрузкой, образующей трехлучевую звезду сопротивлений, получится трехфазная цепь, соединенная по схеме звезда-звезда. При этом три обратных провода заменяются одним, называемым нулевым или нейтральным ( .Трехфазная система при соединении в звезду без нейтрального провода называется трехпроводной , с нейтральным проводом – четырехпроводной .

Четырехпроводная трехфазная цепь, соединенная по схеме звезда-звезда с нулевым проводом, изображена на рис.3.2.


Рис. 3.2

Напряжения между началами фаз или между линейными проводами называют линейными напряжениями . Они обозначаются двумя индексами, например (линейное напряжение между точками А и B). Модуль линейного напряжения обозначают U л.

Напряжения между началом и концом фазы или между линейным и нейтральным проводами называются фазными напряжениями ( , , ).

Токи в линейных проводах называют линейными токами ( , , ). За положительное направление токов принимается направление от генератора к нагрузке. Модули линейных токов обозначают I л. Токи в фазах приемника или источника называют фазными токами I ф, а напряжения на них – фазными напряжениями U ф.

При соединении звездой линейные провода соединены последовательно с фазами источника и приемника, поэтому линейные токи являются одновременно фазными токами I л = I ф.

При наличии нейтрального провода ток в нейтральном проводе

. (3.2)

В соответствии со вторым законом Кирхгофа запишем уравнения связи между линейными и фазными напряжениями:

; ; . (3.3)

Очевидно, что - как сумма напряжений по замкнутому контуру.

Рис.3.3

На рис.3.3 представлена векторная диаграмма для симметричной системы напряжений. Как показывает ее анализ (лучи фазных напряжений образуют стороны равнобедренных треугольников с углами при основании, равными 30 0), в этом случае .

Обычно при расчетах принимается . Тогда для случаяпрямого чередования фаз , . С учетом этого на основании соотношений (3.3) могут быть определены комплексы линейных напряжений. Однако при симметрии напряжений эти величины легко определяются непосредственно из векторной диаграммы (рис.3.3). Направляя вещественную ось системы координат по вектору (его начальная фаза равна нулю), отсчитываем фазовые сдвиги линейных напряжений по отношению к этой оси, а их модули определяем в соответствии :

, , .

Если конец каждой фазы обмотки генератора соединить с началом следующей фазы, образуется соединение в треугольник. К точкам соединений обмоток подключают три линейных провода, ведущие к нагрузке (рис.3.4).

Рис. 3.4

Как видно из рис. 3.4, в трехфазной цепи, соединенной треугольником, фазные и линейные напряжения одинаковы U л = U ф. Линейные (I A , I B , I C ) и фазные (I ab , I bc , I ca ) токи нагрузки связаны между собой первым законом Кирхгофа:

На рис. 3.5 изображена векторная диаграмма трехфазной цепи, соединенной треугольником, при симметричной нагрузке состоящей из активных сопротивлений. В этом случае векторы фазных токов совпадают по направлению с векторами соответствующих фазных напряжений.




Из векторной диаграммы следует, что при симметричной нагрузке лучи фазных токов образуют стороны равнобедренных треугольников с углами при основании равными 30 0 . В этом случае соотношения между линейными и фазными токами .

Трехфазные цепи, соединенные звездой, получили большее распространение, чем трехфазные цепи, соединенные треугольником. Это объясняется тем, что, во-первых, в цепи, соединенной звездой, можно получить два напряжения: линейное и фазное. Во-вторых, при несимметричной нагрузке в фазах генератора или трансформатора, соединенных треугольником, в обмотке появляются дополнительные токи нулевой последовательности. Такие токи отсутствуют в фазах электрической машины, соединенных по схеме «звезд».

В заключение отметим, что, помимо рассмотренных соединений трехфазных цепей звезда - звезда и треугольник – треугольник, на практике также применяются схемы звезда - треугольник и треугольник - звезда, схемы которых легко изображаются на примере рис.3.2, 3.3.

Расчет трехфазных цепей

Трехфазные цепи являются разновидностью цепей синусоидального тока, и, следовательно, все рассмотренные ранее методы расчета и анализа в символической форме в полной мере распространяются на них. Анализ трехфазных систем удобно осуществлять с использованием векторных диаграмм, позволяющих достаточно просто определять фазовые сдвиги между комплексными напряжениями и токами.

Схема звезда-звезда с нулевым проводом

Трехфазная цепь по данной схеме (рис.3.2) имеет два узла и три независимых контура, поэтому ее удобнее всего рассчитать методом двух узлов. В общем случае при несимметричной нагрузке и учете сопротивления нулевого провода между нейтральными точками источника и нагрузки возникает узловое напряжение или напряжение смещения нейтрали. Это напряжение определяется по формуле

, (3.5)

где - комплексные проводимости фаз нагрузки; - комплексная проводимость нулевого провода.

Электростанции вырабатывают трехфазный переменный ток . Генератор трехфазного тока представляет собой как бы три объединенных вместе генератора переменного тока, работающих так, чтобы сила тока (и напряжение) изменялась у них не одновременно, а с отставанием на 1/3 периода. Это осуществляется за счет смещения катушек генераторов на 120° одна относительно другой (рис. справа).


Каждая часть обмотки генератора называется
фазой . Поэтому генераторы, которые имеют обмотку, состоящую из трех частей, называют трехфазными .

Следует отметить, что термин «фаза » в электротехнике имеет два значения: 1) как величина, которая совместно с амплитудой определяет состояние колебательного процесса в данный момент времени; 2) в смысле наименования части электрической цепи переменного тока (например, часть обмотки электрической машины).
Некоторое наглядное представление о возникновении трехфазного тока дает установка, изображенная на рис. слева.
Три катушки от школьного разборного трансформатора с сердечниками размещаются по окружности под углом 120° по отношению друг к другу. Каждая катушка соединена с демонстрационным гальванометром . В центре окружности на оси укрепляется прямой магнит. Если вращать магнит, то в каждой из трех цепей «катушка - гальванометр» возникает переменный ток. При медленном вращении магнита можно заметить, что наибольшее и наименьшее значения токов и их направления будут в каждый момент во всех трех цепях различными.

Таким образом, трехфазный ток представляет совместное действие трех переменных токов одинаковой частоты, но сдвинутых по фазе на 1/3 периода относительно друг друга.
Каждая обмотка генератора может соединяться со своим потребителем, образуя несвязанную трехфазную систему. Выигрыша от такого соединения нет никакого по отношению к трем отдельным генераторам переменного тока, так как передача электрической энергии осуществляется с помощью шести проводов (рис. справа).
На практике получили два других способа соединения обмоток трехфазного генератора. Первый способ соединения получил названиезвезды (рис. слева, а), а второй -треугольника (рис. б).
При соединении
звездой концы (или начала) всех трех фаз соединяются в один общий узел, а от начал (или концов) идут провода к потребителям. Эти провода называются линейными проводами . Общую точку, в которой соединяются концы фаз генератора (или потребителя), называют нулевой точкой , или нейтралью . Провод, соединяющий нулевые точки генератора и потребителя, называют нулевым проводом . Нулевой провод применяется в том случае, если в сети создается неравномерная нагрузка на фазы. Он позволяет уравнять напряжения в фазах потребителя.

Нулевой провод , как правило, применяется в осветительных сетях. Даже при наличии одинакового количества ламп равной мощности во всех трех фазах равномерная нагрузка не сохраняется, так как лампы могут включаться, выключаться не одновременно во всех фазах, могут перегорать, и тогда равномерность нагрузки фаз будет нарушена. Поэтому для осветительной сети применяется соединение в звезду, которая имеет четыре провода вместо шести при несвязанной трехфазной системе.

При соединении в звезду различают два вида напряжения:фазное и линейное . Напряжение между каждым линейным и нулевым проводом равно напряжению между зажимами соответствующей фазы генератора и называется фазным (U ф ), а напряжение между двумя линейными проводами - линейным напряжением (U л ).

Поскольку в нулевом проводе при симметричной нагрузке сила тока равна нулю, то ток в линейном проводе равен току в фазе.
При неравномерной нагрузке фаз по нулевому проводу проходит уравнительный ток относительно малой величины. Поэтому сечение этого провода должно быть значительно меньше, чем у линейного провода. В этом можно убедиться, если включить четыре амперметра в линейные и нулевой провода. В качестве нагрузки удобно использовать обычные электрические лампочки (рис. справа).
При одинаковой нагрузке в фазах ток в нулевом проводе равен нулю и надобность в этом проводе отпадает (например, равномерную нагрузку создают электродвигатели). В этом случае производят соединение в «треугольник», которое представляет собой последовательное соединение друг с другом начал и концов катушек генератора. Нулевой провод в этом случае отсутствует.
При соединении обмоток генератора и потребителей «треугольником » фазные и линейные напряжения равны между собой,
т.е. U Л = U Ф , а линейный ток в √3 раз больше фазного тока I Л = √3 . I Ф
Соединение треугольником применяется как при осветительной, так и при силовой нагрузке. Например, в школьной мастерской станки можно включать в звезду или треугольник. Выбор того или иного способа соединения определяется величиной напряжения сети и номинальным напряжением приемников электрической энергии.
Принципиально можно соединять треугольником и фазы генератора, но обычно этого не делают. Дело в том, что для создания заданного линейного напряжения каждая фаза генератора при соединении треугольником должна быть рассчитана на напряжение, в раз большее, чем в случае соединения звездой. Более высокое напряжение в фазе генератора требует увеличения числа витков и усиленной изоляции для обмоточного провода, что увеличивает размеры и стоимость машин. Поэтому фазы трехфазных генераторов почти всегда соединяют звездой. Двигатели же иногда в момент пуска включают звездой, а затем переключают на треугольник.

Электрические двигатели.

Электрический двигатель - это электрическая машина(электромеханический преобразователь), в которой электрическая энергияпреобразуется в механическую, побочным эффектом является выделение тепла.

Принцип действия

В основу работы любой электрической машины положен принцип электромагнитной индукции. Электрическая машина состоит из статора (неподвижной части) и ротора (якоря в случае машины постоянного тока) (подвижной части), электрическим током (или также постоянными магнитами) в которых создаются неподвижные и/или вращающиеся магнитные поля.

Статор - неподвижная часть электродвигателя, чаще всего - внешняя. В зависимости от типа двигателя, может создавать неподвижное магнитное поле и состоять из постоянных магнитов и/или электромагнитов, либо генерировать вращающееся магнитное поле (и состоять из обмоток, питаемых переменным током).

Ротор - подвижная часть электродвигателя, чаще всего располагаемая внутри статора.

Ротор может состоять из:

§ постоянных магнитов;

§ обмоток на сердечнике (подключаемых через щёточно-коллекторный узел);

§ короткозамкнутой обмотки ("беличье колесо" или "беличья клетка"), в которой токи возникают под действием вращающегося магнитного поля статора).

Взаимодействие магнитных полей статора и ротора создает вращающий момент, приводящий в движение ротор двигателя. Так происходит преобразование электрической энергии, подаваемой на обмотки двигателя, в механическую (кинетическую) энергию вращения. Полученную механическую энергию можно использовать приводя в движение механизмы.

Классификация электродвигателей

§ Двигатель постоянного тока - электрический двигатель, питание которого осуществляется постоянным током;

§ Коллекторные двигатели постоянного тока. Разновидности:

§ С возбуждением постоянными магнитами;

§ С параллельным соединением обмоток возбуждения и якоря;

§ С последовательным соединением обмоток возбуждения и якоря;

§ Со смешанным соединением обмоток возбуждения и якоря;

§ Бесколлекторные двигатели постоянного тока (вентильные двигатели) - Электродвигатели, выполненные в виде замкнутой системы с использованием датчика положения ротора (ДПР), системы управления (преобразователя координат) и силового полупроводникового преобразователя (инвертора).

§ Двигатель переменного тока - электрический двигатель, питание которого осуществляется переменным током, имеет две разновидности:

§ Синхронный электродвигатель - электродвигатель переменного тока, ротор которого вращается синхронно с магнитным полемпитающего напряжения;

§ Гистерезисный двигатель

§ Асинхронный электродвигатель - электродвигатель переменного тока, в котором частота вращения ротора отличается от частоты вращающего магнитного поля, создаваемого питающим напряжением.

§ Однофазные - запускаются вручную, или имеют пусковую обмотку, или имеют фазосдвигающую цепь

§ Двухфазные - в том числе конденсаторные.

§ Трёхфазные

§ Многофазные

§ Шаговые двигатели - Электродвигатели, которые имеют конечное число положений ротора. Заданное положение ротора фиксируется подачей питания на соответствующие обмотки. Переход в другое положение осуществляется путём снятия напряжения питания с одних обмоток и передачи его на другие.

Вращающееся магнитное поле

§ Универсальный коллекторный двигатель (УКД) - коллекторный электродвигатель, который может работать и на постоянном токе и на переменном токе.

Двигатели переменного тока с питанием от промышленной сети 50 гц не позволяют получить частоту вращения выше 3000 об/мин. Поэтому для получения высоких частот применяют коллекторный электродвигатель, который к тому же получается легче и меньше двигателя переменного тока той же мощности или применяют специальные передаточные механизмы, изменяющие кинематические параметры механизма до необходимых нам (мультипликаторы). При применении преобразователей частоты или наличии сети повышенной частоты (100, 200, 400 гц) двигатели переменного тока оказываются легче и меньше коллекторных двигателей (коллекторный узел иногда занимает половину пространства). Ресурс асинхронных двигателей переменного тока гораздо выше, чем у коллекторных, и определяется состоянием подшипников и изоляции обмоток.

Синхронный двигатель с датчиком положения ротора и инвертором является электронным аналогом коллекторного двигателя постоянного тока.

Виды стиральных машин.

Стирка по-научному.

Трехфазная система переменного тока широко распространена и применяется во всем мире. При помощи трехфазной системы обеспечиваются оптимальные условия для передачи по проводам электроэнергии на большие расстояния, возможность для создания простых по устройству и удобных в эксплуатации электродвигателей.

Трехфазная система переменного тока

Называется система, состоящая из трех цепей с действующими электродвижущими силами (ЭДС) одинаковой частоты. Эти ЭДС сдвинуты относительно друг друга по фазе на одну треть. Каждая отдельная цепь в системе называется фазой. Вся система трех переменных токов, сдвинутых по фазе, и называется трехфазным током.

Практически все генераторы, которые установлены на электростанциях - это генераторы трехфазного тока. В конструкции соединены в одном агрегате три . Электродвижущие силы, индуцированные в них, как сказано ранее, сдвинуты на одну треть периода относительно друг друга.

Как же осуществляется работа генератора

В генераторе трехфазного тока есть три отдельных якоря, располагающихся на статоре устройства. Они имеют смещение на 1200 между собой. В центре устройства вращается индуктор, общий для трех якорей. Переменная ЭДС одинаковой частоты индуцируется в каждой катушке. Однако, моменты прохождения этих электродвижущих сил через нуль в каждой из этих катушек оказываются сдвинуты на 1/3 периода, так как индуктор проходит возле каждой катушки на 1/3 времени позднее, чем предыдущей.

Все обмотки являются самостоятельными генераторами тока и источниками электроэнергии. Если присоединить провода к концам каждой обмотки, то получаются три независимые цепи. В данном случае, чтобы передать всю электроэнергию потребуется шесть проводов. Однако при других соединениях обмоток между собой вполне можно обойтись 3-4 проводами, что дает большую экономию провода.


Соединение - звездой

Концы всех обмоток соединяются в одной точке генератора, так называемой нулевой точке. Затем производится соединение с потребителями, используя четыре провода: три - линейные провода, которые идут от начала обмоток 1, 2, 3, один - нулевой (нейтральный) провод, идущий от нулевой точки генератора. Такую систему называют еще четырехпроводной.


Соединение треугольником

В этом случае конец предыдущей обмотки соединяется с началом последующей, образуя, тем самым треугольник. Линейные провода соединяются с вершинами треугольника - точками 1, 2, 3. При таком подключении совпадают. В сравнении с подключением звездой, подключение треугольником снижает линейное напряжение примерно в 1,73 раза. Оно допускается лишь при условии одинаковой нагрузки фаз, иначе в обмотках может увеличиться, что представляет опасность для генератора.

Отдельные потребители (нагрузки), которые питаются от раздельных пар проводов, точно так же могут соединяться или звездой или треугольником. В итоге получается ситуация, аналогичная генератору: при соединении треугольником - нагрузки находятся под линейным напряжением, при соединении звездой - напряжение в 1,73 раза меньше.