Освещение

Плавный пуск для светодиодов и светодиодных лент. Схема плавного розжига и затухания светодиодов. Чем примечательна симисторная

Недавно решил собрать схему, которая позволила бы мне любую светодиодную ленту (будь то в автомобиле или дома) плавно разжигать. Изобретать велосипед я не стал, и решил немного по Google ить. При поиске почти на каждом сайте находил схемы, где светодиодная нагрузка сильно ограничивается возможностями схемы.

Мне же хотелось, чтобы схема всего лишь плавно поднимала напряжение на выходе, чтобы диоды плавно разгорались и схема было обязательно пассивной (не требовала дополнительного питания и в режиме ожидания не потребляла бы ток) и обязательно была бы защищена стабилизатором напряжения для увеличения срока жизни моей подсветки.

А так как плат пока я травить не научился, то решил что сначала нужно освоить самые простые схемы и при монтаже использовать готовые монтажные платы, которые как и остальные компоненты схемы, можно приобрести в любом магазине радиодеталей.

Для того что собрать схему плавного розжига светодиодов со стабилизацией мне нужно было приобрести следующие компоненты:

Вообще, готовая монтажная плат достаточно удобная альтернатива так называемому методу “ЛУТ” где с помощью программы Sprint-Layout, принтера и того же текстолита можно собрать почти любую схему. Так вот, новичкам следует всё таки сначала освоить более простой вариант, который значительно проще и что самое главное “прощает ошибки” и так же не требует наличия паяльной станции.

Немного упростив исходную схему решил её перерисовать:

Знаю что на схемах транзистор и стабилизатор обозначается не так, но мне так проще, а вам будет нагляднее. А если же вы, как и я, успели позаботиться о стабилизации, то вам нужна ещё более простая схема:

Тоже самое, только без использования стабилизатора КРЕН8Б.

  • R3 - 10К Ом
  • R2 - 51К Ом
  • R1 - от 50К до 100К Ом (сопротивлением этого резистора можно управлять скоростью розжига светодиодов).
  • С1 - от 200 до 400мк Ф (можно и выбрать другие ёмкости, но превышать 1000мк Ф не стоит).

На тот момент мне нужны были две платы плавного розжига:
- для уже сделанной подсветки ног.
- для плавного розжига приборной панели.

Так как о стабилизации светодиодов подсвечивающих мои ноги я уже давно позаботился, то в схеме розжига КРЕНка уже была не нужна.

Схема плавного розжига без стабилизатора.

Для такой схемы я использовал всего 1.5 кв см монтажной платы, которая стоит всего 60 рублей.

Схема плавного розжига со стабилизатором напряжения.

Размеры 25 х 10 мм.

Достоинствами данной схемы является то, что подключаемая нагрузка зависит только от возможностей блока питания (аккумулятора авто), и от полевого транзистора IRF9540N, который очень надежен (дает возможность подключить через себя 140Вт нагрузки при токе до 23А (информация из интернета). Схема сможет выдержит 10 метров светодиодной ленты, но тогда транзистор придется охлаждать, благо в таком исполнении можно закрепить на полевик радиатор (что конечно приведёт к увеличению площади схемы).

При первом тестировании схемы было снято коротенькое видео:

Изначально R1 стоял номиналом 60К Ом и мне не понравилось то что розжиг до полной яркости занимал около 5-6 секунд, в последствии к R1 был допаян ещё один резистор на 60К Ом и время розжига уменьшилось до 3 секунд, что для подсветки ног было самое то.

А так как схему розжига для подсветки ног необходимо было подключать в разрыв основной схемы питания, то не долго думая как же её заизолировать, просто запихнул её в кусок велосипедной камеры.

Подключив схему плавного розжига снял ещё одно видео:

На этом всё, благодарю всех тех кто всё таки смог дочитать сей пост до конца. Конечно же для кого то это будет жёстким баяном, но надеюсь найдутся товарищи которым будет интересно.

Плавное включение и затухание светодиодов своими руками

Что такое плавное включение , или иначе розжиг светодиодов думаю представляют все.

Разберем подробно плавное включение светодиодов своими руками .

Светодиоды должны не сразу разжигается, а через 3-4 секунды, но изначально не мигать и не светиться вообще.

Схема устройства:


Компоненты:

■ Транзистор IRF9540N
■ Транзистор KT503
Выпрямительный диод 1N4148
■ Конденсатор 25V100µF
■ Резисторы:
- R1: 4.7 кОм 0.25 Вт
- R2: 68 кОм 0.25 Вт
- R3: 51 кОм 0.25 Вт
- R4: 10 кОм 0.25 Вт
■ Односторонний стеклотекстолит и хлорное железо
■ Клеммники винтовые, 2-х и 3-х контактные, 5 мм

Изменить время розжига и затухания светодиодов можно подбором номинала сопротивления R2, а также подбором ёмкости конденсатора.


Существует много способов резки текстолита: ножовкой по металлу, ножницами по металлу, с помощью гравера и так далее.

Я с помощью канцелярского ножа сделал бороздки по намеченным линиям, далее выпилил ножовкой и обточил края напильником. Также пробовал использовать ножницы по металлу – оказалось гораздо проще, удобнее и без пыли.


Далее прошкуриваем заготовку под водой наждачной бумагой с зернистостью P800-1000. Затем сушим и обезжириваем поверхность платы 646 растворителем с помощью безворсовой салфетки. После этого нежелательно руками прикасаться к поверхности платы.


Для этого в программе при печати слева вверху в разделе “слои” снимаем ненужные галочки. Также при печати в настройках принтера выставляем высокую четкость и максимальное качество изображения. С помощью малярного скотча приклеиваем на обычный лист А4 страницу глянцевого журнала/глянцевую фотобумагу (если их размеры меньше А4) и печатаем на ней нашу схему. Я пробовал использовать кальку, страницы глянцевого журнала и фотобумагу. Удобнее всего, конечно, работать с фотобумагой, но в отсутствии последней и страницы журнала вполне сгодятся. Калькой же пользоваться не советую – рисунок на плате очень плохо пропечатался и получится нечётким.


Теперь прогреваем текстолит и прикладываем нашу распечатку. Затем утюгом с хорошим прижимом проутюживаем плату в течение нескольких минут.


Теперь даем плате полностью остыть, после чего опускаем в ёмкость с холодной водой на несколько минут и аккуратно избавляемся от бумаги на плате. Если целиком не отдирается, то скатываем потихоньку пальцами.


Затем проверяем качество пропечатанных дорожек, и плохие места подкрашиваем тонким перманентным маркером.


С помощью двустороннего скотча приклеиваем плату на кусочек пенопласта и помещаем в раствор хлорного железа на несколько минут. Время вытравливания зависит от многих параметров, поэтому периодически достаем и проверяем нашу плату. Хлорное железо используем безводное, разводим в теплой воде согласно пропорциям, указанным на упаковке. Чтобы ускорить процесс травления можно периодически покачивать ёмкость с раствором.

После того, как ненужная медь стравилась – отмываем плату в воде. Затем с помощью растворителя или наждачки счищаем тонер с дорожек.

Затем необходимо просверлить дырочки для монтажа элементов платы. Для этого я использовал бормашинку (гравер) и сверла диаметром 0.6 мм и 0.8 мм (из-за разной толщины ножек элементов).


Далее нужно облудить плату. Есть множество различных способов, я решил воспользоваться одним из самых простых и доступных. С помощью кисточки смазываем плату флюсом (например ЛТИ-120) и паяльником лудим дорожки. Главное не держать жало паяльника на одном месте, иначе возможен отрыв дорожек при перегреве. Берем на жало больше припоя и ведем им вдоль дорожки.

Теперь напаиваем необходимые элементы согласно схеме. Для удобства в SprintLayot распечатал на простой бумаге схему с обозначениями и при пайке сверял правильность расположения элементов.


После пайки очень важно полностью смыть флюс, в противном случае могут быть коротыши между проводниками (зависит от применяемого флюса). Сначала рекомендую тщательно протереть плату 646 растворителем, а потом хорошо промыть щеткой с мылом и высушить.


После сушки подключаем «постоянный плюс» и «минус» платы к питанию («управляющий плюс» не трогаем), затем вместо светодиодной ленты подсоединяем мультиметр и проверяем, нет ли напряжения. Если хоть какое-то напряжение все-таки присутствует, значит где-то коротит, возможно плохо смыли флюс.



Итог:

Проделанной работой я доволен, хоть и потратил достаточно много времени. Процесс изготовления плат методом ЛУТ показался мне интересным, и несложным. Но, не смотря на это, в процессе работы допустил, наверное, все ошибки, какие только возможно. Но на ошибках, как говориться, учатся.

Подобная плата плавного розжига светодиодов имеет достаточно широкое применение и может использоваться, как в автомобиле (плавный розжиг ангельских глазок, панели приборов, подсветки салона и т.п.), так и в любом другом месте, где есть светодиоды и питание от 12В. Например, в подсветке системного блока компьютера или декорировании подвесных потолков.

Приветствую всех начинающих электронщиков и любителей радиотехники и тех, что любит что-то поделать своими руками. В данной статье я постараюсь убить сразу двух зайцев: постараюсь вам рассказать о том, как самому сделать печатную плату отличного качества, которая ничем не будет отличаться от заводского аналога, тем самым мы с вами будем делать . Данное устройство можно будет использовать в автомобиле для подключения светодиодов. Например, как в .

Для работы нам понадобятся:
  • Транзисторы – IRF9540N и КТ503;
  • Конденсатор на 25 V 100 пФ;
  • Диод выпрямительный 1N4148;
  • Резисторы:
    • R1 – 4.7 кОм 0,25 Вт;
    • R2 – 68 кОм 0,25 Вт;
    • R3 – 51 кОм 0,25 Вт;
    • R4 – 10 кОм 0,25 Вт.
  • Клеммники винтовые, 2-х и 3-х контактные, 5 мм
  • Текстолит односторонний и FeCl3 – хлорное железо
Ход Работы.

Первым делом нам необходимо подготовить плату. Для этого отмечаем на текстолите условные границы платы. Края платы делаем чуть больше чем рисунок дорожки. После того как отметили края границ можно начать вырезать. Вырезать можно ножницами по металлу, а если их под рукой нет, то можно попробовать вырезать с помощью канцелярского ножа.

После того как вырезали плату, ее нужно отшлифовать. Для этого наждачкой с зернистостью Р800-1000 прошкуриваем под водой плату. Далее сушим и обезжириваем поверхность 646-м растворителем. После чего прикасаться к плате не рекомендуется.

Далее скачиваем программу, что находится в конце статьи, SprintLayout и с помощью ее открываем схему платы и распечатываем ее на лазерном принтере на глянцевой бумаге. Важно, чтобы при печати в настройках принтера была выставлена высокая четкость и высокое качество изображения.

Затем необходимо будет утюгом подогреть подготовленную плату и приложить на нее нашу распечатку и утюгом хорошенько проутюжить плату в течение нескольких минут.

Далее дадим плате немного остыть, после чего опустим ее на несколько минут в чашку с холодной водой. Вода позволит легко отодрать глянцевую бумагу от платы. Если глянец целиком не отодрался, то можно просто скатывать потихоньку пальцами остатки бумаги.

Затем необходимо будет проверить качество дорожек, если имеются незначительные повреждения, то можно подкрасить плохие места простым маркером.

Итак, подготовительный этап завершен. Осталось . Для этого насаживаем нашу плату на двухсторонний скотч и приклеиваем ее на небольшой кусок пенопласта и опускаем ее в раствор хлорного железа. Чтобы ускорить процесс травления можно покачивать чашку с раствором.

После того как лишняя медь стравится необходимо будет отмыть плату в воде и с помощью растворителя очистить тонер с дорожек.

Осталось просверлить дырочки. Для нашего устройства были использованы сверла диаметром в 0.6 и 0.8 мм.

Важно не перегревать дорожки иначе можно их повредить.

Осталось собрать наше устройство. Предварительно схему с обозначениями рекомендуется распечатать на обычной бумаге и, ориентируясь по нему расположить все элементы на плате.

После того как все припаяно, надо полностью очистить плату от флюса. Для этого тщательно протрите плату тем 646 растворителем и хорошенько промойте щеткой и с мылом и высушите.

После просушки подключаем и проверяем с помощью работоспособность сборки. Для этого подключаем «постоянный плюс » и «минус» к питанию а вместо светодиодов подключаем мультиметр и проверяем нет ли напряжения. Если есть напряжение, то значит что флюс смут не полностью.

Как видите процесс изготовления платы не очень и сложный процесс. Данный способ изготовления платы называется ЛУТом (лазерно-утюжная технология) . Как было сказано выше, данная сборка может быть использована для ( , , , ), или же в любых других местах, где используются светодиода и питание в 12 вольт –

Всем спасибо за внимание! С удовольствием отвечу на все Ваши вопросы!

Удачи на дорогах!!!

ОБЯЗАТЕЛЬНО!!!

Приборы, действия и свойства которых вам мало известны, особенно самоделки, подключайте через предохранители.

В данной статье будет рассмотрено несколько вариантов схем реализации идеи плавного включения и выключения светодиодов подсветки панели приборов, салонного света, а в некоторых случаях и более мощных потребителей – габаритов, ближнего света и им подобных. Если у вас панель приборов подсвечивается с помощью светодиодов, при включении габаритов подсветка приборов и кнопок на панели будет зажигаться плавно, что выглядит достаточно эффектно. То же можно сказать и про освещение салона, которое будет плавно загораться, и плавно же затухать после закрытия дверей автомобиля. В общем, неплохой такой вариант тюнинга подсветки:).

Схема управления плавным включением и выключением нагрузки, управляемая плюсом.

Данную схему можно использовать для плавного включения светодиодной подсветки приборной панели автомобиля.

Эту схему можно использовать и для плавного розжига стандартных ламп накаливания со спиралями небольшой мощности. При этом транзистор необходимо разместить на радиаторе с площадью рассеивания около 50 кв. см.

Схема работает следующим образом.
Управляющий сигнал поступает через диоды 1N4148 при подаче напряжения на «плюс» при включении габаритных огней и зажигания.
При включении любого из них подается ток через резистор 4,7 кОм на базу транзистора КТ503. При этом транзистор открывается, и через него и резистор 120 кОм начинает заряжаться конденсатор.
Напряжение на конденсаторе плавно растет, и далее через резистор 10 кОм поступает на вход полевого транзистора IRF9540.
Транзистор постепенно открывается, плавно увеличивая напряжение на выходе схемы.
При снятии управляющего напряжения транзистор КТ503 закрывается.
Конденсатор разряжается на вход полевого транзистора IRF9540 через резистор 51 кОм.
После окончания процесса разряда конденсатора схема перестает потреблять ток и переходит в режим ожидания. Потребляемый ток в этом режиме незначителен. При необходимости, изменить время розжига и затухания управляемого элемента (светодиоды или лампы) можно подбором номиналов сопротивлений и емкости конденсатора 220 мкФ.

При правильной сборке и исправных деталях этой схеме не нужны дополнительные настройки.

Вот вариант печатной платы для размещения деталей данной схемы:

Данная схема позволяет плавно включать – выключать светодиоды, а также уменьшать яркость подсветки при включении габаритов. Последняя функция может быть полезна в случае чрезмерно яркой подсветки, когда в темноте подсветка приборов начинает слепить и отвлекать водителя.

В схеме используется транзистор KT827. Переменное сопротивление R2 служит для установки яркости свечения подсветки в режиме включенных габаритов.
Подбором емкости конденсатора можно регулировать время загорания и угасания светодиодов.

Для того что бы реализовать функцию притухания подсветки при включении габаритов, нужно установить сдвоенный выключатель габаритов или использовать реле, которое бы срабатывало при включении габаритов и замыкало контакты выключателя.

Плавное выключение светодиодов.

Простейшая схема для плавного затухания светодиода VD1. Хорошо подойдет для реализации функции плавного угасания салонного света после закрытия дверей.

Диод VD2 подойдет почти любой, ток через него невелик. Полярность диода определяется в соответствии с рисунком.

Конденсатор C1 электролитический, большой емкости, емкость подбираем индивидуально. Чем больше емкость, тем дольше горит светодиод после отключения питания, но не стоит устанавливать конденсатор слишком большой емкости, так как будут обгорать контакты концевиков из-за большой величины зарядного тока конденсатора. К тому же, чем больше емкость — тем массивнее сам конденсатор, могут возникнуть проблемы с его размещением. Рекомендуемая емкость 2200 мкФ. При такой емкости подсветка затухает в течение 3-6 секунд. Конденсатор должен быть рассчитан на напряжение не менее 25В. ВАЖНО! При установке конденсатора соблюдайте полярность! При неправильной полярности подключения электролитический конденсатор может взорваться!

Принцип работы схемы:

Управляющий «плюс» поступает через диод 1N4148 и резистор 4,7 кОм на базу транзистора КТ503. При этом транзистор открывается, и через него и резистор 68 кОм начинает заряжаться конденсатор. Напряжение на конденсаторе плавно растет, и далее через резистор 10 кОм поступает на вход полевого транзистора IRF9540. Транзистор постепенно открывается, плавно увеличивая напряжение на выходе схемы. При снятии управляющего напряжения транзистор КТ503 закрывается. Конденсатор разряжается на вход полевого транзистора IRF9540 через резистор 51 кОм. После окончания процесса разряда конденсатора схема перестает потреблять ток и переходит в режим ожидания. Потребляемый ток в этом режиме незначителен.

Схема с управляющим минусом:

Отмечена распиновка IRF9540N

Схема с управляющим плюсом:


Отмечена распиновка IRF9540N и KT503

В этот раз изготавливать схему решил методом ЛУТ (лазерно-утюжная технология). Делал я это первый раз в жизни, сразу скажу, что ничего сложного нет. Для работы нам понадобится: лазерный принтер, глянцевая фотобумага (или страница глянцевого журнала) и утюг.

К О М П О Н Е Н Т Ы:

Транзистор IRF9540N
Транзистор KT503
Выпрямительный диод 1N4148
Конденсатор 25V100µF
Резисторы:
- R1: 4.7 кОм 0.25 Вт
- R2: 68 кОм 0.25 Вт
- R3: 51 кОм 0.25 Вт
- R4: 10 кОм 0.25 Вт
Односторонний стеклотекстолит и хлорное железо
Клеммники винтовые, 2-х и 3-х контактные, 5 мм

При необходимости, изменить время розжига и затухания светодиодов можно подбором номинала сопротивления R2, а также подбором ёмкости конденсатора.


Р А Б О Т А:
?????????????????????????????????????????
?1? В этой записи подробно покажу, как изготавливать плату с управляющим плюсом. Плата с управляющим минусом делается аналогично, даже чуть проще из-за меньшего количества элементов. Отмечаем на текстолите границы будущей платы. Края делаем чуть больше, чем рисунок дорожек, а затем вырезаем. Существует много способов резки текстолита: ножовкой по металлу, ножницами по металлу, с помощью гравера и так далее.

Я с помощью канцелярского ножа сделал бороздки по намеченным линиям, далее выпилил ножовкой и обточил края напильником. Также пробовал использовать ножницы по металлу – оказалось гораздо проще, удобнее и без пыли.

Далее прошкуриваем заготовку под водой наждачной бумагой с зернистостью P800-1000. Затем сушим и обезжириваем поверхность платы 646 растворителем с помощью безворсовой салфетки. После этого нельзя руками прикасаться к поверхности платы.

2? Далее с помощью программы SprintLayot открываем и печатаем на лазерном принтере схему. Печатать необходимо только слой с дорожками без обозначений. Для этого в программе при печати слева вверху в разделе “слои” снимаем ненужные галочки. Также при печати в настройках принтера выставляем высокую четкость и максимальное качество изображения. Программу и чуть доработанные мной схемы залил для Вас на Яндекс.Диск.

С помощью малярного скотча приклеиваем на обычный лист А4 страницу глянцевого журнала/глянцевую фотобумагу (если их размеры меньше А4) и печатаем на ней нашу схему.

Я пробовал использовать кальку, страницы глянцевого журнала и фотобумагу. Удобнее всего, конечно, работать с фотобумагой, но в отсутствии последней и страницы журнала вполне сгодятся. Калькой же пользоваться не советую – рисунок на плате очень плохо пропечатался и получится нечётким.

3? Теперь прогреваем текстолит и прикладываем нашу распечатку. Затем утюгом с хорошим прижимом проутюживаем плату в течение нескольких минут.

Теперь даем плате полностью остыть, после чего опускаем в ёмкость с холодной водой на несколько минут и аккуратно избавляемся от бумаги на плате. Если целиком не отдирается, то скатываем потихоньку пальцами.

Затем проверяем качество пропечатанных дорожек, и плохие места подкрашиваем тонким перманентным маркером.


4? С помощью двустороннего скотча приклеиваем плату на кусочек пенопласта и помещаем в раствор хлорного железа на несколько минут. Время вытравливания зависит от многих параметров, поэтому периодически достаем и проверяем нашу плату. Хлорное железо используем безводное, разводим в теплой воде согласно пропорциям, указанным на упаковке. Чтобы ускорить процесс травления можно периодически покачивать ёмкость с раствором.

После того, как ненужная медь стравилась – отмываем плату в воде. Затем с помощью растворителя или наждачки счищаем тонер с дорожек.

5? Затем необходимо просверлить дырочки для монтажа элементов платы. Для этого я использовал бормашинку (гравер) и сверла диаметром 0.6 мм и 0.8 мм (из-за разной толщины ножек элементов).

6? Далее нужно облудить плату. Есть множество различных способов, я решил воспользоваться одним из самых простых и доступных. С помощью кисточки смазываем плату флюсом (например ЛТИ-120) и паяльником лудим дорожки. Главное не держать жало паяльника на одном месте, иначе возможен отрыв дорожек при перегреве. Берем на жало больше припоя и ведем им вдоль дорожки.

7? Теперь напаиваем необходимые элементы согласно схеме. Для удобства в SprintLayot распечатал на простой бумаге схему с обозначениями и при пайке сверял правильность расположения элементов.

8? После пайки очень важно полностью смыть флюс, в противном случае могут быть коротыши между проводниками (зависит от применяемого флюса). Сначала рекомендую тщательно протереть плату 646 растворителем, а потом хорошо промыть щеткой с мылом и высушить.

После сушки подключаем «постоянный плюс» и «минус» платы к питанию («управляющий плюс» не трогаем), затем вместо светодиодной ленты подсоединяем мультиметр и проверяем, нет ли напряжения. Если хоть какое-то напряжение все-таки присутствует, значит где-то коротит, возможно плохо смыли флюс.

Ф О Т О Г Р А Ф И И:

Убрал плату в термоусадку

В И Д Е О:

?????????????????????????????????????????
И Т О Г:
?????????????????????????????????????????
Проделанной работой я доволен, хоть и потратил достаточно много времени. Процесс изготовления плат методом ЛУТ показался мне интересным, и несложным. Но, не смотря на это, в процессе работы допустил, наверное, все ошибки, какие только возможно. Но на ошибках, как говориться, учатся.

Подобная плата плавного розжига светодиодов имеет достаточно широкое применение и может использоваться, как в автомобиле (плавный розжиг ангельских глазок, панели приборов, подсветки салона и т.п.), так и в любом другом месте, где есть светодиоды и питание от 12В. Например, в подсветке системного блока компьютера или декорировании подвесных потолков.