Заземление

Экраноплан на воздушной подушке своими руками. Самодельный экраноплан. Устройства для повышения качестве крыла

Согласно определению, сформулированному во «Временном руководстве по безопасности экранопланов», принятом ИМО: экраноплан - это многорежимное судно, которое в своём основном эксплуатационном режиме летит с использованием «экранного эффекта» над водной или иной поверхностью, без постоянного контакта с ней, и поддерживается в воздухе, главным образом, аэродинамической подъёмной силой, генерируемой на воздушном крыле (крыльях), корпусе, или их частях, которые предназначены для использования действия «экранного эффекта»

Основная цель, которую мы поставили перед собой, - создание спасательного средства, способного быстро оказать помощь тонущим или терпящим бедствие на воде людям и с минимальными потерями времени доставить пострадавших на берег для оказания неотложной помощи. Конечно, такой аппарат может быть использован и для связи. Нам казалось, что с помощью несложного навесного крыльевого устройства можно придать совершенно новые качества практически любому серийно выпускаемому нашей промышленностью судну - будь то мотолодка или катер.

Для начала мы избрали в качестве основы корпус мотолодки из стеклопластика, с обводами «тримаран», известный под названием «Кристалл» (эта лодка была выпущена небольшой серией предприятиями ОСВОДа). На ней установили легкосъемные плоскости стреловидной (в плане) формы, имеющие большое отрицательное V и погруженную в воду заднюю кромку (общий вид показан на рисунке 1, схема в трех проекциях - на рисунке 2). При этом сама лодка не подвергалась сколько-нибудь серьезным переделкам, если не считать усиления транца и вклейки бобышек для крепления моторамы.

В процессе испытаний мы предполагали опробовать два варианта движителей - сначала водяной, а затем воздушный винт, с приводом в обоих случаях от силовой головки подвесного лодочного мотора «Вихрь-25». В первом случае управление осуществляется поворотом всего мотора, во втором - с помощью воздушного руля площадью 1,2 м2, расположенного непосредственно за винтом.

Как уже говорилось выше, на больших скоростях многие моторные суда имеют тенденцию отрываться от воды и переходить в режим полета на очень малой высоте, определяемой, как правило, глубиной погружения водяного винта (в случае установки воздушного винта эта высота может быть значительно больше). Очень часто суда с водяными винтами, выскочив из воды, продолжают движение, совершенно не касаясь воды, как говорят специалисты, - «на одном винте».

Но такое движение практически является неуправляемым и даже опасным. Разработанная нами крыльевая система, благодаря ее особой форме, делает полет около поверхности воды более стабильным и, что самое главное, саморегулирующимся: при возникновении крена на опускающемся вниз крыле быстро растет подъемная сила, и прямолинейный полет сам собою восстанавливается. Вследствие такой саморегуляции отпадает надобность в установке элеронов самолетного типа, и управление таким судном не требует длительной тренировки водителя.

Сам полет (в случае установки обычного подвесного лодочного мотора) происходит следующим образом: в статическом положении, при нормальной осадке лодки, задняя кромка обеих плоскостей погружается в воду на глубину 80-100 мм; при трогании с места и на скоростях порядка 20-30 км/ч эти погруженные участки крыльев создают дополнительную подъемную гидродинамическую силу, способствуя «всплыванию» лодки; одновременно на непогруженной части крыльев возникает аэродинамическая подъемная сила, и при достижении лодкой воздушной скорости порядка 50-55 км/ч происходит отрыв крыльевой системы от поверхности воды. Узкая щель, образующаяся при этом между задними кромками крыльев и водой, способствует протеканию встречного потока вдоль корпуса лодки, увеличивая тем самым подъемную силу и как бы «выглаживая» волны и брызговые струи. Лодка взлетает и продолжает движение на высоте 0,3-0,5 м, используя эффект динамической воздушной подушки.

Из сказанного понятно, что наивыгоднейшим для быстрого взлета является движение против ветра - в этом случае его скорость суммируется со скоростью лодки, и необходимая воздушная Скорость достигается быстрее, В случае установки подвесного мотора высота полета регулируется автоматически; по мере выхода гребного винта из воды она может снижаться, поскольку тяга винта падает. Эта взаимозависимость облегчает управление аппаратом и позволяет надеяться на широкое распространение в недалеком будущем «летающих лодок» именно с подвесными моторами.

Винтомоторная установка с воздушным винтом значительно расширяет рамки применения «летающих лодок», поскольку они становятся независимыми от воды и способны продолжать полет практически над любой подстилающей поверхностью, будь то песок, заболоченные луга, молевые участки водоемов или лед. При этом высота полета может увеличиться (с описываемым крыльевым устройством) до 1-1,5 м.

Разработанная и построенная нами винтомоторная установка состоит из силовой головки подвесного лодочного мотора «Вихрь-25» с цепной передачей на воздушный винт. Редукция 1: 3, что позволяет максимально использовать КПД винта. Поскольку двигатель «Вихря» имеет водяное охлаждение, его пришлось оборудовать водорадиатором и расширительным бачком емкостью 2 л. В качестве водорадиатора можно использовать маслорадиатор от автомобиля «Москвич-412» или один из имеющихся в ассортименте автомобильных водяных обогревателей, установив его так, чтобы он обдувался потоком воздуха от винта.

Проведенные испытания на воде показали, что в целом навесная крыльевая система себя оправдала. Но это не значит, что ее следует копировать: об этом рано говорить, поскольку сам принцип полета на малой высоте еще не нашел широкого применения и техника его недостаточно изучена. Наша работа пока дает только отправные данные для дальнейших экспериментов.

Ю. Макаров, В. Аникин, А. Соболев

Рис. 1. Общий вид и детали конструкции: А - крыльевая система в комбинации с подвесным лодочным мотором: 1 - корпус типа «тримаран»; 2 - навесная консоль крыла; 3 - габаритный огонь (слева - красный, справа - зеленый); 4 - передний лонжерон центроплана; 5 - задний лонжерон центроплана; 6 - подвесной лодочный мотор мощностью 25-30 л. с.; 7 - узел крепления задней кромки крыла к корпусу;

Б - конструкция силовой рамы центроплана: 1 - передний лонжерон; 2 - фланцы крепления к бортам корпуса мотолодки; 3 - задний лонжерон; 4 - конусные болты; 5 - трубчатый наконечник заднего лонжерона; 6 - узел крепления задней кромки крыла; 7 - трубчатый наконечник переднего лонжерона;

В - винтомоторная установка с воздушным винтом: 1 - двигатель (силовая головка подвесного лодочного мотора «Вихрь-М»); 2 - водорадиатор; 3 - цепная передача с двигателя на воздушный винт; 4 - габаритный огонь ограждения воздушного винта (справа - зеленый, слева - красный); 5 - трубчатая рама; 6 - топовый огонь (белый); 7 - воздушный руль направления; 8 - ограждение воздушного винта; 9 - расширительный бачок системы охлаждения; 10 - подкос моторамы; 11 - опорная пята моторамы.

Если вы считаете, что это просто "проект в голове" и он не может быть реализован, то вы заблуждаетесь, вот видео полета подобного экраноплана, только тут добавлена еще и воздушная подушка.

Снайпер комментирует:

Помоему защита от ботов слабовата

Fish Food комментирует:

Надо будет попробовать сделать такой за зиму и летом опробовать на озерах.
Из плюсов - небольшое сопротивление воды, фактически летим над поверхностью. Да и камыши не страшны.

Sergey комментирует:

Интересный аппарат, на базе лодки "романтика" можно замутить, практически плоскоднонка. Кто нибудь знает как правильно центровку расчитать при такой конструкции крыла? Кто реально будет делать, пишите на почту - покумекаем [email protected]

Евгений комментирует:

А если наподобие катамарана сделать разнести пошире корпуса, плоскость между ними. Не устойчивей будет?

Юра комментирует:

а если пенек или топляк??? все, беда)))

Комар комментирует:

А на случай беды взять с собой 5 литров водки! С водкой беда - не горе:)

Алекс комментирует:

Есть ощущение, что это копия из какого-то "Моделист-Конструктор"...там частенько такие идеи вбрасывали.

Антон комментирует:

Главное что бы работало и летало, а откуда - без разницы!

евгений комментирует:

такая конструкция для 25 го вихря слишком слоба, да и надо под крылья нагнетать

Сергей комментирует:

Если решили сделать экраноплан на коленке лучший вариант СК. Он раелен и точно хорошо летает. К нему на крылья ближе к корпусу надо продольные ребра по 2-3 с каждой стороны для устранения срыва водуха с крыла. На днище надо сделать по краям НА 2/3 до транца продольные ребра выступающие ниже днища на 100-200 мм. эти с ребрами на кральях
не дадут срываться воздушному потоку на поворотах и стабилизируют курсовую устойчивость.

Sergey комментирует:

Сеть порыл, что то по этому аппарату больше никакой инфы... может ссылочки у кого есть? Логически машинка работоспособная, полщадь крыла в отличии от эска-1 значительно меньше значит от экрана в свободный полёт возможно и не соскочит, что было бы чревато при отсутствии эленронов и руля высоты... Вопрос как при поворотах себя вести будет, по идее его заваливать должно не наружное крыло, либо радиус довольно большой будет. может подобие закрылоков добавить не симмитрично отклоняемых? Нагнетание как пишут хорошо только при взлёте, в свободном полёт еот него только вред. Сергей "рёбра" имеете ввиду как на миг-17? плоские шайбы? Если дно лодки плоское какой в них смысл? поток под дно будет забиваться так и так? Вы говорите что он реален, может информацией какой то располагаете? Сечение лонжеронов какое брать? Крыло с пенопластовым заполнением предполагаю делать снаружи стеклоткань два слоя. по задней кромке снизу усиление. Словом буду рад толковым мыслям, можем где нибудь в другом месте обсудить..

петр комментирует:

Отлично, просто отлично!

АНАТОЛИЙ комментирует:

Строил эска-1 только одноместный намного убавил в размерах двигатель от БУРАНА РМЗ 640 при готовности 90 процентов утанул в гараже при наводнении на причале не очень нравилосьчто двигатель находится за спиной над головой если при аварии оторвется а масса ойойой сне ет не только голову поэтому в проекте тандемная схема по ЙОРГЕ04

луонид комментирует:

БЫЛ ИЗГОТОВЛЕН В 80-Х НА РЕКЕ ЛЕНА НА БАЗЕ ЛОДКИ обь-М С МОТОРОМ ВИХРЬ-30 С ВОЗДУШНЫМ ВИНТОМ. ПО ЧЕРТЕЖУ ИЗ ТЕХНИКА ДО М -ВЕЛ СЕБЯ ВСЕГДА ДОСТОЙНО

Владимир комментирует:

Есть книжечка про экранолеты, там все и центровка и остойчивость и высота полета в экране. Где то у меня лежит, вроде синенькая.

Согласно определению, сформулированному во «Временном руководстве по безопасности экранопланов», принятом ИМО: экраноплан - это многорежимное судно, которое в своём основном эксплуатационном режиме летит с использованием «экранного эффекта» над водной или иной поверхностью, без постоянного контакта с ней, и поддерживается в воздухе, главным образом, аэродинамической подъёмной силой, генерируемой на воздушном крыле (крыльях), корпусе, или их частях, которые предназначены для использования действия «экранного эффекта»

Основная цель, которую мы поставили перед собой, - создание спасательного средства, способного быстро оказать помощь тонущим или терпящим бедствие на воде людям и с минимальными потерями времени доставить пострадавших на берег для оказания неотложной помощи. Конечно, такой аппарат может быть использован и для связи. Нам казалось, что с помощью несложного навесного крыльевого устройства можно придать совершенно новые качества практически любому серийно выпускаемому нашей промышленностью судну - будь то мотолодка или катер.

Для начала мы избрали в качестве основы корпус мотолодки из стеклопластика, с обводами «тримаран», известный под названием «Кристалл» (эта лодка была выпущена небольшой серией предприятиями ОСВОДа). На ней установили легкосъемные плоскости стреловидной (в плане) формы, имеющие большое отрицательное V и погруженную в воду заднюю кромку (общий вид показан на рисунке 1, схема в трех проекциях - на рисунке 2). При этом сама лодка не подвергалась сколько-нибудь серьезным переделкам, если не считать усиления транца и вклейки бобышек для крепления моторамы.

В процессе испытаний мы предполагали опробовать два варианта движителей - сначала водяной, а затем воздушный винт, с приводом в обоих случаях от силовой головки подвесного лодочного мотора «Вихрь-25». В первом случае управление осуществляется поворотом всего мотора, во втором - с помощью воздушного руля площадью 1,2 м2, расположенного непосредственно за винтом.

Как уже говорилось выше, на больших скоростях многие моторные суда имеют тенденцию отрываться от воды и переходить в режим полета на очень малой высоте, определяемой, как правило, глубиной погружения водяного винта (в случае установки воздушного винта эта высота может быть значительно больше). Очень часто суда с водяными винтами, выскочив из воды, продолжают движение, совершенно не касаясь воды, как говорят специалисты, - «на одном винте».

Но такое движение практически является неуправляемым и даже опасным. Разработанная нами крыльевая система, благодаря ее особой форме, делает полет около поверхности воды более стабильным и, что самое главное, саморегулирующимся: при возникновении крена на опускающемся вниз крыле быстро растет подъемная сила, и прямолинейный полет сам собою восстанавливается. Вследствие такой саморегуляции отпадает надобность в установке элеронов самолетного типа, и управление таким судном не требует длительной тренировки водителя.

Сам полет (в случае установки обычного подвесного лодочного мотора) происходит следующим образом: в статическом положении, при нормальной осадке лодки, задняя кромка обеих плоскостей погружается в воду на глубину 80-100 мм; при трогании с места и на скоростях порядка 20-30 км/ч эти погруженные участки крыльев создают дополнительную подъемную гидродинамическую силу, способствуя «всплыванию» лодки; одновременно на непогруженной части крыльев возникает аэродинамическая подъемная сила, и при достижении лодкой воздушной скорости порядка 50-55 км/ч происходит отрыв крыльевой системы от поверхности воды. Узкая щель, образующаяся при этом между задними кромками крыльев и водой, способствует протеканию встречного потока вдоль корпуса лодки, увеличивая тем самым подъемную силу и как бы «выглаживая» волны и брызговые струи. Лодка взлетает и продолжает движение на высоте 0,3-0,5 м, используя эффект динамической воздушной подушки.

Из сказанного понятно, что наивыгоднейшим для быстрого взлета является движение против ветра - в этом случае его скорость суммируется со скоростью лодки, и необходимая воздушная Скорость достигается быстрее, В случае установки подвесного мотора высота полета регулируется автоматически; по мере выхода гребного винта из воды она может снижаться, поскольку тяга винта падает. Эта взаимозависимость облегчает управление аппаратом и позволяет надеяться на широкое распространение в недалеком будущем «летающих лодок» именно с подвесными моторами.

Винтомоторная установка с воздушным винтом значительно расширяет рамки применения «летающих лодок», поскольку они становятся независимыми от воды и способны продолжать полет практически над любой подстилающей поверхностью, будь то песок, заболоченные луга, молевые участки водоемов или лед. При этом высота полета может увеличиться (с описываемым крыльевым устройством) до 1-1,5 м.

Разработанная и построенная нами винтомоторная установка состоит из силовой головки подвесного лодочного мотора «Вихрь-25» с цепной передачей на воздушный винт. Редукция 1: 3, что позволяет максимально использовать КПД винта. Поскольку двигатель «Вихря» имеет водяное охлаждение, его пришлось оборудовать водорадиатором и расширительным бачком емкостью 2 л. В качестве водорадиатора можно использовать маслорадиатор от автомобиля «Москвич-412» или один из имеющихся в ассортименте автомобильных водяных обогревателей, установив его так, чтобы он обдувался потоком воздуха от винта.

Проведенные испытания на воде показали, что в целом навесная крыльевая система себя оправдала. Но это не значит, что ее следует копировать: об этом рано говорить, поскольку сам принцип полета на малой высоте еще не нашел широкого применения и техника его недостаточно изучена. Наша работа пока дает только отправные данные для дальнейших экспериментов.

Ю. Макаров, В. Аникин, А. Соболев

Рис. 1. Общий вид и детали конструкции: А - крыльевая система в комбинации с подвесным лодочным мотором: 1 - корпус типа «тримаран»; 2 - навесная консоль крыла; 3 - габаритный огонь (слева - красный, справа - зеленый); 4 - передний лонжерон центроплана; 5 - задний лонжерон центроплана; 6 - подвесной лодочный мотор мощностью 25-30 л. с.; 7 - узел крепления задней кромки крыла к корпусу;

Б - конструкция силовой рамы центроплана: 1 - передний лонжерон; 2 - фланцы крепления к бортам корпуса мотолодки; 3 - задний лонжерон; 4 - конусные болты; 5 - трубчатый наконечник заднего лонжерона; 6 - узел крепления задней кромки крыла; 7 - трубчатый наконечник переднего лонжерона;

В - винтомоторная установка с воздушным винтом: 1 - двигатель (силовая головка подвесного лодочного мотора «Вихрь-М»); 2 - водорадиатор; 3 - цепная передача с двигателя на воздушный винт; 4 - габаритный огонь ограждения воздушного винта (справа - зеленый, слева - красный); 5 - трубчатая рама; 6 - топовый огонь (белый); 7 - воздушный руль направления; 8 - ограждение воздушного винта; 9 - расширительный бачок системы охлаждения; 10 - подкос моторамы; 11 - опорная пята моторамы.

Если вы считаете, что это просто "проект в голове" и он не может быть реализован, то вы заблуждаетесь, вот видео полета подобного экраноплана, только тут добавлена еще и воздушная подушка.

Снайпер комментирует:

Помоему защита от ботов слабовата

Fish Food комментирует:

Надо будет попробовать сделать такой за зиму и летом опробовать на озерах.
Из плюсов - небольшое сопротивление воды, фактически летим над поверхностью. Да и камыши не страшны.

Sergey комментирует:

Интересный аппарат, на базе лодки "романтика" можно замутить, практически плоскоднонка. Кто нибудь знает как правильно центровку расчитать при такой конструкции крыла? Кто реально будет делать, пишите на почту - покумекаем [email protected]

Евгений комментирует:

А если наподобие катамарана сделать разнести пошире корпуса, плоскость между ними. Не устойчивей будет?

Юра комментирует:

а если пенек или топляк??? все, беда)))

Комар комментирует:

А на случай беды взять с собой 5 литров водки! С водкой беда - не горе:)

Алекс комментирует:

Есть ощущение, что это копия из какого-то "Моделист-Конструктор"...там частенько такие идеи вбрасывали.

Антон комментирует:

Главное что бы работало и летало, а откуда - без разницы!

евгений комментирует:

такая конструкция для 25 го вихря слишком слоба, да и надо под крылья нагнетать

Сергей комментирует:

Если решили сделать экраноплан на коленке лучший вариант СК. Он раелен и точно хорошо летает. К нему на крылья ближе к корпусу надо продольные ребра по 2-3 с каждой стороны для устранения срыва водуха с крыла. На днище надо сделать по краям НА 2/3 до транца продольные ребра выступающие ниже днища на 100-200 мм. эти с ребрами на кральях
не дадут срываться воздушному потоку на поворотах и стабилизируют курсовую устойчивость.

Sergey комментирует:

Сеть порыл, что то по этому аппарату больше никакой инфы... может ссылочки у кого есть? Логически машинка работоспособная, полщадь крыла в отличии от эска-1 значительно меньше значит от экрана в свободный полёт возможно и не соскочит, что было бы чревато при отсутствии эленронов и руля высоты... Вопрос как при поворотах себя вести будет, по идее его заваливать должно не наружное крыло, либо радиус довольно большой будет. может подобие закрылоков добавить не симмитрично отклоняемых? Нагнетание как пишут хорошо только при взлёте, в свободном полёт еот него только вред. Сергей "рёбра" имеете ввиду как на миг-17? плоские шайбы? Если дно лодки плоское какой в них смысл? поток под дно будет забиваться так и так? Вы говорите что он реален, может информацией какой то располагаете? Сечение лонжеронов какое брать? Крыло с пенопластовым заполнением предполагаю делать снаружи стеклоткань два слоя. по задней кромке снизу усиление. Словом буду рад толковым мыслям, можем где нибудь в другом месте обсудить..

петр комментирует:

Отлично, просто отлично!

АНАТОЛИЙ комментирует:

Строил эска-1 только одноместный намного убавил в размерах двигатель от БУРАНА РМЗ 640 при готовности 90 процентов утанул в гараже при наводнении на причале не очень нравилосьчто двигатель находится за спиной над головой если при аварии оторвется а масса ойойой сне ет не только голову поэтому в проекте тандемная схема по ЙОРГЕ04

луонид комментирует:

БЫЛ ИЗГОТОВЛЕН В 80-Х НА РЕКЕ ЛЕНА НА БАЗЕ ЛОДКИ обь-М С МОТОРОМ ВИХРЬ-30 С ВОЗДУШНЫМ ВИНТОМ. ПО ЧЕРТЕЖУ ИЗ ТЕХНИКА ДО М -ВЕЛ СЕБЯ ВСЕГДА ДОСТОЙНО

Владимир комментирует:

Есть книжечка про экранолеты, там все и центровка и остойчивость и высота полета в экране. Где то у меня лежит, вроде синенькая.

Не случайно создание принципиально новых типов судов почти всегда связывают с малым судостроением. Именно на небольших, сравнительно недорогих лодках и катерах удобно проводить эксперименты, причем высокие скорости достигаются при умеренной мощности механической установки. Глиссирующие катера, катамараны, суда на подводных крыльях и воздушной подушке, - все они начинались с малых судов.

Примечательно, что достигнутые успехи получали затем быстрейшее развитие на более крупных судах, дающих больший экономический эффект. Возможно, так будет и с парящими судами - экранопланами, хотя в настоящее время (в стадии экспериментов) их размеры и грузоподъемность невелики. Сейчас трудно говорить о перспективах внедрения экранопланов, но вероятные области их применения можно связать с высокими скоростями и. проходимостью этих аппаратов. Вероятно, будут созданы быстроходные патрульные экранопланы для обширных заболоченных или заросших тростником устьев рек, возможно ими заинтересуются и спортсмены.

С основными принципами конструкции и движения экранопланов, их достоинствами и недостатками, по сравнению с судами других типов, знакомит читателей статья кандидата технических наук Н. И. Белавина.

Уже более ста лет инженеры-кораблестроители, борясь за скорость, стремятся «вытащить судно из воды», поднять его в воздух - среду в 840 раз менее плотную, чем вода. Глиссирование, подводные крылья, воздушная подушка, - таковы ступени развития этой идеи, последнюю из которых занимают экранопланы, т. е. аппараты, использующие при движении эффект повышения давления воздуха под крылом вблизи водной поверхности - экрана. Кстати, экранирующей. поверхностью может быть и земля, поэтому экранопланы, как и суда на воздушной подушке, являются амфибиями: они способны выходить на сушу, преодолевать заболоченные участки, парить над замерзшими водоемами и т. д.

Построенные в настоящее время экранопланы (табл. 1) еще далеки от совершенства. Их сравнительно низкие энерговооруженность и аэродинамические характеристики обеспечивают скорость в пределах 80-150 км/час. Однако специалисты пришли к выводу, что технически вполне осуществимо повышение скорости экранопланов до 350 и более км/час.


Для сравнения возможностей экранопланов и скоростных аппаратов уже привычных нам типов используется такой наглядный показатель как аэрогидродинамическое качество K, представляющее собой отношение подъемной (полезной) силы аппарата к величине сопротивления среды (воды, воздуха) его движению. Напомнйм, что от величины К зависит необходимая для движения с заданной скоростью мощность, а следовательно, и вес энергетической установки и, что еще более важно, расход топлива .

Для глиссеров со скоростями движения 60-80 км/час гидродинамическое качество К=6÷8, для судов на подводных коыльях с близкими скоростями К=10÷12, для судов на воздушной подушке К=12÷16 (с учетом поддува 4-5), а для самолетов аэродинамическое качество K=16÷17. Для существующих экранопланов значения А составляют 19-25, а это значит, например, что для движения с одинаковой скоростью экраноплаиу требуется втрое меньшая мощность, чем глиссеру.

Дело теперь за тем, чтобы практически реализовать это теоретически бесспорное преимущество. Вероятно, пройдет еще немного времени и над нашими реками и озерами появятся летающие катера - экранопланы. И мы не будем удивляться им, как не удивляет нас вид проносящихся мимо судов на крыльях или, тем более, пролетающих самолетов.

Из истории экранопланов

По-видимому, первый из них был создан финским инженером Т. Каарио. Зимой 1932 г. над замерзшей поверхностью озера он испытал экраноплан, буксируемый аэросанями. Позднее, в 1935-1936 гг. Каарио построил усовершенствованный аппарат, уже оборудованный двигателем с воздушным винтом, а в дальнейшем постоянно совершенствовал конструкцию своих экранопланов; последнюю модификацию - «Аэросани № 8» - он испытывал в 1960-1962 гг. (рис. 1).

В 1939 г. американец Д. Уорнер, занимавшийся экспериментами по снижению сопротивления быстроходных катеров, разработал проект катера, оборудованного системой несущих крыльев (рис. 2). Для облегчения выхода на расчетный режим околоэкранного полета предполагалось оборудовать этот аппарат системой поддува с двумя мощными вентиляторами.

В 40-х годах обширные эксперименты выполнялись в Швеции под руководством И. Троенга. Были построены два экраноплана по схеме «летающее крыло» (рис. 3), т. е. катамараны с несущим крылом.

В послевоенные годы работы по созданию экранопланов развернулись в США. Начиная с 1958 г. известным авиаконструктором У. Бертельсоном были построены и испытаны три аппарата. Это «Аркоптеры» «GEM-1» (рис. 4), «GEM-2», «GEM-З», выполненные примерно по одной и той же схеме, но имеющие разную величину. Двухместный экраноплан - «летающее крыло» (рис. 5) с толкающим воздушным винтом построил Н. Дискинсон. Американская фирма «Локхид» провела испытания трех аппаратов, последний из которых («летающая лодка») показан на рис. 6.

Самоходная пилотируемая модель 1000-тонного трансконтинентального пассажирского экранопла-на «Большой Вейландкрафт» была построена по проекту X. Вейланда (рис. 7). Это - четырехтонный катамаран с двумя несущими крыльями, расположенными одно за другим (типа тандем). Во время первых летных испытаний модель разбилась.

Экраноплан «Аэрофойлбот Х-112», спроектированный А. Липпишем, построен по чисто самолетной схеме и напоминает гидросамолет (рис. 8).

В Японии созданием экранопланов успешно занимается фирма «Кавасаки». Построенный ею аппарат «KAG-З» (рис. 9) представляет собой катамаран с несущим крылом и мощным подвесным мотором. Более подробное его описание приведено в следующей статье.

В нашей стране еще в начале 30-х годов очень интересный проект двухмоторного транспортного экраноплана был разработан авиаконструктором П. И. Гроховским. В 1963 г. студентами ОИИМФ под руководством Ю. А. Будницкого построен выполненный по схеме «летающее крыло» одноместный экраноплан с двумя мотоциклетными двигателями (рис. 10).

Аэродинамика экраноплана

Положение крыла над экраном характеризуется относительной высотой:


где h - высота задней кромки крыла над экраном, а b - хорда крыла. Установлено, что влияние экрана на работу крыла начинает сказываться при h
Благодаря близости экрана уменьшается и лобовое сопротивление крыла, главным образом, за счет снижения его индуктивного сопротивления (рис. 13). Напомним, что причиной индуктивного сопротивления являются вихри, возникающие на концах крыла вследствие перетекания воздуха из-под нижней плоскости (зона повышенного давления) на верхнюю (зона разрежения). Сопротивление профиля, обусловленное силами давления и трения, с приближением крыла к экрану изменяется сравнительно мало.

С приближением крыла к экрану качество К может увеличиться в 1,5-2 и более раз по сравнению с его значением для данного же крыла, но на большой высоте; одновременно можно заметить, что при этом максимальные значения К достигаются при меньших углах атаки. Естественно, что К вблизи экрана, как и на большой высоте, сильно зависит от характеристик самого крыла. Отметим, что применяющиеся на экранопланах профили крыла по своим основным характеристикам различаются мало. На эк-раноплане «ОИИМФ-2» применен профиль с относительной толщиной С=10÷12%.

При расчете площади крыла определяющей величиной является удельная нагрузка на единицу его площади. Для существующих экранопланов величина эта сравнительно невелика (35-50 кг/м 2), что объясняется стремлением ограничить мощность двигателя экспериментального аппарата.

Устройства для повышения качестве крыла

Для повышения летных и особенно взлетно-посадочных характеристик экранопланов их крылья оборудуют (рис. 14) щитками, закрылками, заслонками, концевыми шайбами. Применяются поворачивающиеся крылья.

Напомним, что отклонение щитков и закрылков обеспечивает увеличение подъемной силы крыла, главным образом, благодаря повышению вогнутости его Профиля. Концевые шайбы уменьшают перетекание воздуха через оконечности крыльев, а вблизи экрана обеспечивают образование под крылом полузамкнутого контура с зоной повышенного давления. На экранопланах обычно применяются односторонние шайбы, расположенные только с нижней стороны крыла.

Особенности аэрогидродинамической компоновки

Существуют две схемы компоновки экранопланов: «летающее крыло» и самолетная.

Первая характеризуется тем, что несущее крыло опирается концами на два поплавка, которые одновременно выполняют роль концевых шайб. Достоинствами этой схемы являются высокое аэродинамическое качество (благодаря отсутствию развитого корпуса и надстроек) и возможность использования объемов самого крыла для размещения грузов, основным недостатком - сложность решения проблемы устойчивости и мореходности (особенно для малых аппаратов).

В самолетной схеме из-за малого удлинения крыла λ сравнительно сильно сказывается влияние корпуса (фюзеляжа) аппарата, снижающее качество. Тем не менее, крылья малого удлинения установлены на большинстве современных экранопланов (исключение представляет модель X. Вейланда), так как с увеличением λ=l/b существенно ухудшаются мореходные и эксплуатационные качества аппарата, например, появляется опасность касания концом крыла гребня волны. При заданной площади крыла необходимое значение К можно обеспечить за счет уменьшения h, что требует, как известно, при заданной высоте полета увеличения хорды крыла, т. е. соответствующего уменьшения λ.

Устойчивость

Экраноплан, как и самолет, должен обладать способностью сохранять заданный режим полета и самостоятельно (без вмешательства пилота) возвращаться к нему после, например, порыва ветра. При движении аппарата продольная устойчивость в значительной степени обусловлена взаимным расположением его центра тяжести ЦТ и аэродинамического фокуса F (рис. 15), т. е. точки, относительно которой момент полной аэродинамической силы крыла не зависит от угла атаки при постоянной скорости полета. Если ЦТ самолета расположен впереди фокуса, аппарат обладает статической продольной устойчивостью (по перегрузке). Для экранопланов проблема устойчивости значительно сложнее, так как положение фокуса крыла экраноплана зависит не только от угла атаки, но и от h.

Продувками моделей установлено, что обычно применяемые крылья не обладают продольной устойчивостью, поэтому все современные экранопланы (как и самолеты) приходится оборудовать стабилизаторами или другими устройствами, смещающими их F в хвост аппарата (тем самым увеличивается расстояние между ЦТ и F). Наиболее успешно проблема продольной устойчивости решена на аппарате «Х-112», на котором она обеспечивается, главным образом, высоко установленным на вертикальном оперении, за пределами влияния экрана, развитым стабилизатором.

Что же касается поперечной устойчивости экранопланов, то она практически всегда будет обеспечена: в случае накренения аппарата на консоли крыла, приближающегося к экрану, возрастает подъемная сила и появляется восстанавливающий момент.

Путевая (курсовая) устойчивость обеспечивается примерно теми же способами, которые приняты в авиации, т. е. соответствующим выбором площади вертикального оперения (воздушного киля) и его положения относительно ЦТ экраноплана. При этом, естественно, существенную роль играет общая компоновка аппарата, в частности, положение точки приложения тяги винта.

Управляемость

Для управления по курсу чаще всего ставят один или два воздушных руля, для повышения эффективности обычно располагаемых в струе воздушного винта. В случае применения гребного винта используется обычный водяной руль либо подвесной мотор.

Известную сложность представляет свойственный экранопланам сильный дрейф на циркуляции; ведь у них нет ни погруженной в воду части корпуса, ни стоек подводных крыльев. Возможности выполнения крутых виражей со скольжением несущего крыла ограничены опасной близостью поверхности воды или Земли.

Для управляемости в продольной плоскости практически все экранопланы, включая и аппараты с гребным винтом, оборудуются рулем высоты или закрылком. Эти же устройства используются при старте экраноплана и для балансировки его на выбранном режиме полета.

Управляемость аппаратов в поперечной плоскости, т. е. по крену, необходимая для противодействия кренящим моментам и выполнения виражей, осуществляется при помощи элеронов, элевонов (т, е. тех же элеронов, но выполняющих одновременно и функции рулей высоты) или зависающих элеронов (т. е. элеронов, могущих работать и в режиме закрылков). Площадь этих дополнительных плоскостей довольно велика, так как скорость движения экраноплана все же значительно меньше, чем скорость самолета. Так, суммарная площадь V-образного хвостового оперения на «KAG-З» составляет 3,2 м 2 или около 35% площади несущего крыла.

Двигатели и движители

Мощность двигателей экранопланов, как правило, сравнительно невелика: отнесенная к полному весу экраноплана она колеблется от 80 до 160 л. с./т.

Большинство современных экранопланов приводится в движение воздушным винтом. Достоинства его очевидны: это возможность достижения больших скоростей и обеспечения амфибийных качеств аппарата.

Реже используется гребной винт, работающий в воде. Его положительными сторонами являются сравнительно небольшие размеры и незначительная шумность, а самое главное - более высокий к. п. д. на скоростях до 100-120 км/час. Так, на швартовах удельный упор, развиваемый воздушными винтами, колеблется в пределах 2-3 кг/л. с., а у гребных достигает 4-5 кг/л. с.

Стартовые устройства

Для выхода на основной режим движения экраноплану, как и гидросамолету или судну на подводных крыльях, необходимо развить скорость, при которой подъемная сила крыльев станет равной весу аппарата и оторвет его от воды. Испытаниями моделей установлено, что максимальное сопротивление движению («горб» на кривой сопротивления) возникает на скоростях, составляющих 40-60% от скорости отрыва.

Из рис. 16 видно, что горб полного сопротивления R возникает вследствие роста его гидродинамической составляющей W при повышении скорости на режиме плавания. Именно горбу сопротивления при критической скорости υ кр и соответствует минимальное значение аэрогидродинамического качества К экраноплана. Если максимальная тяга движителя недостаточна (кривая 1), экраноплан не сможет преодолеть горб сопротивления и будет продолжать глиссировать со скоростью, соответствующей точке α.

Насколько резко меняется сопротивление при разбеге видно, например, из кривой сопротивления экраноплана «Х-112» (рис. 17). При выходе на расчетный режим R упало с 25-35 до 10 кг, а гидродинамическое качество К (при весе D=231 кг) увеличилось с 7,7 до 23.

Для преодоления горба сопротивления при разбеге и выходе на расчетный режим было бы необходимо кратковременно повышать мощность двигателя в 2,5-3,5 раза по сравнению с той, которая необходима для полета. На практике повышения подъемной силы, выталкивающей корпус из воды в момент разгона, достигают применением каких-либо стартовых устройств: закрылков, предкрылков, поворотных крыльев, гидролыж, систем поддува.

На «Аэросанях № 8», например, это - два небольших поворотных крыла, установленных между боковыми шайбами в струе воздушного винта. В момент разбега среднее крыло при помощи ручного привода устанавливается так, что отбрасываемая винтом воздушная струя направляется под основное несущее крыло. В результате в полузамкнутом объеме под несущим крылом, огражденном с боков поплавками-шайбами, а в хвостовой части опущенными закрылками, образуется воздушная подушка с повышенным давлением. Таким образом, даже при отсутствии поступательного движения на крыле развивается значительная подъемная сила, приподнимающая аппарат из воды.

Стартовое устройство в виде гидролыж, т. е. подводных крыльев Еесьма малого удлинения (λ=0,1÷0,2 и менее), до настоящего времени было применено лишь на экраноплане X. Вейланда. Считается, что их достоинствами являются довольно высокое гидродинамическое качество (К=5÷6), возможность снижения перегрузок аппарата при движении на волнении и простота.

Стартовое устройство в виде специальной системы поддува, состоящей из двух вентиляторов с газотурбинным приводом, предусмотрено лишь на экраноплане «Коламбиа».

Стартовые устройства могут применяться также и для снижения перегрузок при посадке, особенно в сложных гидрометеорологических условиях.

Конструкция корпуса

По конструкции корпуса, поплавков, крыльев и других элементов современные экранопланы во многом напоминают самолет. Большинство аппаратов выполнено из легких, главным образом алюминиевых, сплавов, причем толщины обшивки и профилей набора (например, у экраноплана ОИИМФ) находятся в пределах 0,5-2,0 мм.

Несколько отличаются от других аппараты У. Бертельсона, на которых применена ферменная конструкция из легких стальных труб с дюралевой обшивкой. Оригинальна конструкция экраноплана Н. Дискинсона: несущее крыло и поплавки выполнены из сплошных брусков пенопласта, стянутых тонким стальным тросом.

Все в больших масштабах применяются и новые конструкционные материалы. Например, часть обшивки «KAG-З» изготовлена из стеклопластика.

1. Основы теории крыла читатель найдет в статье Э. А. Афрамеева и В. В. Вейнберга, помещенной . Здесь напомним выражение, связывающее мощность N p и основные расчетные характеристики аппарата:


где G - его вес, υ - заданная скорость.

2. При повышении скоростей до 140-150 км/час значение К из-за кавитации крыльев падает до 5-6, в то время как для экранопланов оно сохраняется без изменений. Это делает вывод в пользу экранопланов еще более очевидным.

СНЕЖНЫЕ САНДАЛЕТЫ. Две конструкции сандалет (рис. 13, 14), надеваемых прямо на лыжные ботинки, придумали американцы К. Херольд и Д. Мак-Дональд. Сделать себе ту или иную пару сандалет по выбору можно за несколько часов.

Подберите гладкую березовую доску толщиной 30 мм и несколько кожаных ремешков. Встаньте на доску правым ботинком так, чтобы волокна дерева проходили вдоль ботинка. Очертите карандашом его контур. То же самое сделайте для левого ботинка. Слева и справа по контурам дайте припуск 15- 20 мм, а спереди и сзади 30-40 мм.

Спрямите контур вдоль длинных сторон. Отрежьте ножовкой заготовки. Ножом тщательно остругайте нижнюю

плоскость, придав ей в середине небольшую выпуклость. На боковой поверхности сделайте пазы. Мебельными гвоздями прибейте в пазах задники и ремешки. Остается на скользящей поверхности сандалет Херольда устано

вить невысокие лезвия. Благодаря им будет легче выполнять повороты. Сандалеты Мак-Дональда имеют более ^ложную конструкцию задников и закрытых спереди носков.

В. ЗАВОРОТОВ Рис. В. РОДИНА

ЭКРАНОЛЕТ

ЭСКА-1 - это экранолетный спасательный катер-амфибия, созданный группой Молодых специалистов в Центральной лаборатории новых видов спасательной техники.

ЭСИА - аппарат на воздушной подушке, но особенной. Обычно на катера такого типа устанавливают вентиляторы, которые и создают воздушную подушку. У экраногета же она возникает за счет набегающего потока воздуха: между крылом и экраном (поверхностью) образуется избыточное давление. Оно и создает подъемную силу под крылом аппарата.

Экргнолет может стремительно скользить по водной глади озера или водохранилища, легко отрываться от воды и лететь на метровой высоте.

Экранолет оснащен 30-сильным мотоциклетным двигателем и может развивать скорость до 120 км/ч.

Подробно об экранолете ЭСКА-1 мы рассказывали в «ЮТе» № 2 за 1974 год.

Итак, предлагаем вам сделать модель экранопета.

Чертежи модели выполнены в масштабе 1: 33 от натуральной величины.

Для работы Еам потребуются: чертежная бумага, плотный картон, несколько канцелярских скрепок, кусочки пробки и прозрачная пленка. Инструменты обычные: нож или скальпель, ножницы, шило.

Модель состоит из картонного каркаса, детали которого обозначены буквами, бумажной обшивки - детали ее пронумерованы арабскими цифрами и проволочных деталей - они помечены римскими цифрами.

КОРПУС. Прежде всего изготовьте картонные детали каркаса корпуса: Б, В и шпангоуты А, Г, Д, Е, Р, С. Копировать и вырезать эти детали нужно очень аккуратно - тогда они точно подойдут друг к другу. Пользуясь схемой сборки, склейте каркас корпуса. В указанное стрелкой место вклейте кабину 19 с креслом 18 и ручкой управления V (ее основание обернуто бумажной лентой 17 на клею). По обе стороны детали Б приклейте кусочки пробки.

Теперь можно приступать к оклейке каркаса корпуса бумажными деталями, В первую очередь приклейте обшивки 9 и 16. Снизу к ним приклейте детали днища 14 и 15, а сверху - деталь 2.

По указанным на чертеже линиям сгиба согните деталь 4 1 и вставьте ее В зазоры между кабиной 19 и обшив* кой 16. Сверху наклейте деталь 4. Затем на деталь З 1 наклейте деталь 3. По-* лучившееся лобовое стекло закрепите клеем на отведенном ему месте.

КИЛЬ. Силовая часть его - каркас-- уже готова, и вам остается лишь приклеить на место обшивку 10.

СТАБИЛИЗАТОР склеивается из бумажной детали 11, внутрь которой предварительно вкладывается картон-*

В советских и зарубежных научно-популярных журналах неоднократно появлялись сообщения о низколетающих аппаратах-экранолетах, в том числе о советском экспериментальном спасательном катере-амфибии ЭСКА-1. Эту машину любительской постройки, успешно прошедшую цикл летных испытаний, сконструировали московские инженеры А. Гремяцкий, Е. Грунин, С. Чернявский, Ю. Горбенко и Н. Иванов. Летные испытания проводились инженером А. Гремяцким, а затем летчиком А. Балуевым. ЭСКА-1 экспонировался на одной из центральных выставок НТТМ и был отмечен бронзовой медалью ВДНХ СССР, а его создатели - знаками лауреатов НТТМ.

О теоретических основах околоэкранного полета и конструкции ЭСКА-1 рассказывает один из ее создателей, Е. Грунин.

История экранолетов восходит к середине 30-х годов, когда обстроили гибрид самолета, быстроходного катера и аппарата на воздушной подушке. Его создателя, финского инженера Томаса Каарио, и принято считать пионером экранолетостроения.

Конструкции первых машин, несмотря на разнообразие и внешнюю экзотичность форм, не отличались утонченностью проработки. В те годы не существовало стройной теории экранного полета. Проекты создавались на основе большого количества экспериментальных данных, и аппараты, естественно, получались несовершенными. Камнем преткновения и в этот период, и позже - в конце пятидесятых годов - стала проблема продольной устойчивости.

Первым ее решил авиаконструктор А. Липпиш. В 1964 году он построил экранолет Х-112 и успешно испытал его. Затем в 1972 году увидел свет еще один аппарат - Х-113А. Изготовленный из стеклопластика, он показал отличные летные свойства и достиг аэродинамического качества, равного 30!

Что же такое экранолет? По сути, это гидросамолет с модифицированным крылом. Аэродинамическая компоновка позволяет ему летать как вдали, так и вблизи от экрана - земной или водной. поверхности, На рисунке 3 представлена классическая кривая возрастания аэродинамического качества аппарата с уменьшением относительной высоты полета. Заметное влияние экрана на характеристики крыла проявляется на высотах меньших, чем длина его средней аэродинамической хорды (САХ). Здесь иная картина обтекания, нежели при движении вне экрана. При очень малом расстоянии до него, исчисляемом сантиметрами, повышение давления под крылом близко к значению скоростного напора и подъемная сила резко возрастает за счет давления в заторможенном потоке. Двухмерное обтекание профиля показано на рисунках 5 и 6. Физика явления наглядна: вдали от экрана подъемная сила образуется в основном за счет разрежения над крылом, а вблизи - благодаря повышению давления под ним.

1 - ручка управления, 2 - педали, 3 --аккумулятор, 4 - приемник воздушного давления, 5 - штырь антенны, 6 - съемная часть фонаря, 7 - отсек оборудования, 8 - огнетушитель, 9 - воздушный винт, 10 - двигатель, 11 - капот двигателя, 12 - моторама, 13 - тяга управления рулем высоты, 14 - съемные люки для подхода к проводке управления, 15 - киль, 16 - стабилизатор, 17 - руль высоты, 18 - руль поворота, 19- водяной руль, 20- бензобак, 21- кресла пилота и пассажира, 22- приборная доска, 23- ручка управления двигателем (сектор газа), сечеиня Б - Б, В - В, Г-Г, Д-Д, Е-Е, Ж - Ж и нервюры центроплана увеличены.

Из графика, который в аэродинамике называют полярой, видно, как близость экрана сказывается на подъемной силе и лобовом сопротивлении (рис. 7). С уменьшением относительной высоты полета растет Су и снижается Сх. Происходит крутой сдвиг поляры вверх и влево. Она получает менее выраженный максимум, так как срыв потока на верхнем контуре профиля меньше влияет на величину подъемной силы. Это приводит к значительному росту аэродинамического качества всего аппарата. У ЭСКА-1 оно, например, достигало 25.

Сложнее обстоит дело с устойчивостью и управляемостью. Для условий полета эти параметры экранолетов изучены все еще слабо, тем более что при смене режима движения или с изменением высоты они, как правило, резко меняются.

Рассмотрим, как ведет себя экранолет в экранном режиме. Предположим, что он движется в нескольких сантиметрах над водой. Картина обтекания крыла воздухом следующая; давление под крылом возрастает, начинает действовать экранный эффект, качество увеличивается. Но за это приходится дорого платить: на скорости более 200 км/ч экранолет неожиданно теряет устойчивость и переворачивается через корму, Именно так погибли в 1967 году Дональд Кэмпбелл на «Синей птице» и семь лет спустя - Чезаре Скотти на туннельном катере.

Что же происходило? Разгадка нашлась: изменение обтекания крыла влекло за собой ухудшение продольной устойчивости. Аэродинамический фокус экранолета, такой постоянный в полете на высоте, у экрана вдруг раздвоился, и каждая из его «половин» начала блуждать по хорде крыла и вести себя по-разному: одна стала отслеживать угол атаки, другая впала в зависимость от расстояния до воды. Назвали их так: наиболее «своенравного» - фокусом по высоте, другого - фокусом по углу атаки.

«Своенравного» вот почему. Если обычное прямоугольное крыло с удлинением 0,5-2 снабдить концевыми плоскостями-шайбами (чтобы из-под него не вытекал воздух) и приближать к экрану в потоке аэродинамической трубы, то фокус по высоте начнет смещаться по хорде назад. При относительной высоте крыла над экраном, равной 5-6% от САХ, он остановится и начнет возвращаться. Фокус же по углу атаки имеет более постоянный характер и с уменьшением высоты движется только в одном направлении - назад, от носка профиля к его середине. Чтобы понять закономерность разбега фокусов, экспериментаторы исследовали самые различные типы крыльев. Оказалось: в присутствии экрана степень разбега находится в прямой зависимости от формы крыла в плане. Из них только одно (!) обладает минимальным разбегом - это треугольное крыло с задней кромкой обратной стреловидности 45-60° и удлинением 1,7- 2. Мало того, в силу самой геометрической формы крыла фокус по высоте размещается впереди фокуса по углу атаки. А это главное условие продольной устойчивости в полете над экраном! На рисунке 4 показано положение основных аэродинамических сил, действующих на экранолет.

Критериями его продольной устойчивости служат: запас устойчивости по высоте, то есть расстояние в долях САХ от центра тяжести экранолета до фокуса, в котором приложено приращение подъемной силы, возникающее при изменении высоты полета, и запас устойчивости по углу атаки - расстояние от ЦТ до фокуса по углу атаки.

Чтобы экранолет летал, а пилот не боялся перевернуться на нем, необходимо выбором аэродинамической компоновки добиться положения фокуса по высоте впереди фокуса по углу атаки, что в математическом расчете выражается как неравенство:

ХF Н - ХF α < 0.

Если какая-нибудь сила, например порыв ветра, прижмет экранолет к воде, то приращение подъемной силы в фокусе по высоте относительно центра тяжести создает пикирующий момент. Угол атаки из положительного превратится в отрицательный. Тут же в фокусе по углу атаки появится отрицательное приращение, которое вызовет кабрирующий момент, восстанавливающий равновесие. И ничего страшного не произойдет.

КОМПРОМИСС - СОЮЗНИК КОНСТРУКТОРА

Экранолет должен быть легким и в то же время прочным, технологичным в изготовлении, надежным в эксплуатации. Наконец, он должен быть дешевым.

Задавшись этими, порой взаимоисключающими требованиями, мы проанализировали ряд возможных конструкций и пришли к выводу, что наиболее простым будет деревянный аппарат с широким применением авиационной фанеры, а также пенопласта, стеклоткани и других материалов.

Для крыла ЭСКА-1 подошел модифицированный профиль ЦАГИ Р-11-КЛАРК-У с плоским нижним обводом. Он хорошо зарекомендовал себя на исследованных моделях. Крыло имеет аэродинамическую и геометрическую крутку; относительная толщина профиля в корне крыла 10%, на конце 12,5%, а угол отклонения профиля от строительной горизонтали экранолета от корня к концу консоли уменьшается с 4,5 до 2,5°.

Крыло в плане треугольное. Положение центра тяжести на различных углах атаки и при изменении расстояния до экрана изменяется незначительно. Для поперечной устойчивости и управляемости на консолях имеются так называемые отъемные части крыла (ОЧК) - аэродинамические поверхности, оснащенные элеронами.

Интересный факт: многие экранолеты имеют прямоугольное крыло малого удлинения. Оно хотя и простое в изготовлении, но обладает двумя существенными недостатками. Во-первых, положение центра давления у него зависит от угла атаки и расстояния до воды и колеблется в пределах 15-65% средней аэродинамической хорды. Во-вторых, при обтекании такого крыла с концевыми вертикальными плоскостями-шайбами всегда образуются воздушные вихри, увеличивающие сопротивление движению и ощутимо снижающие аэродинамическое качество. По этой причине мы от прямого крыла отказались.

Горизонтальное оперение. При его проектировании учитывали следующее: оперение, установленное за крылом малого удлинения, малоэффективно при выходе аппарата из зоны влияния экрана - увеличение скоса потока за крылом приводит к тому, что экранолет балансируется на больших углах атаки, и оперение оказывается в невыгодных условиях обтекания. Мы установили его на конце киля - самом отдаленном от крыла месте, где можно не бояться скоса потока. Размеры оперения выбраны такими, чтобы запас продольной статической устойчивости позволял экранолету летать и у экрана и на высоте.

Рис. 3. Зависимость аэродинамического качества от относительной высоты полета.

Так как ЭСКА-1 стартует с воды, то ему необходимы поплавки и глиссирующая поверхность корпуса-лодки. Это важнейшие части любого экранолета, с их помощью он развивает скорость, необходимую для отрыва от воды.

При разбеге аэродинамическое сопротивление быстро растет, потом подъемная сила крыла становится равной весу аппарата, сопротивление его уменьшается, и он отрывается от воды. У ЭСКА-1 максимальное сопротивление - около 70 кгс - отмечалось при скорости 20-25 км/ч (рис. 6).

Еще одна особенность гидродинамической компоновки ЭСКА-1 - на плаву вся задняя кромка крыла неглубоко погружена в воду и на скорости 40- 50 км/ч она действует как реданная поверхность. Большого волнового сопротивления не создается, и ход аппарата ровный, так как крыло опирается на множество гребешков волн. При скорости отрыва экранолет касается воды только реданом корпуса и крыло не испытывает ударных нагрузок…

Вот так, путем компромиссов и конструкторских ухищрений, мы и проектировали нашу машину. Но такой подход к проектированию оправдал себя: четыре года эксплуатации подтвердили разумное сочетание идей, заложенных в ее конструкцию.

КОНСТРУКЦИЯ ЭСКА-1

Фюзеляж экранолета - лодка. В ней размещены: кабина экипажа, приборы оборудование, топливо. Снаружи крепятся консоли крыла, двигатель с воздушным винтом и киль с горизонтальным оперением.

Основное в лодке - каркас, собранный из шпангоутов и стрингеров. Шпангоутов 15, сделаны они из сосновых реек, соединенных бобышками из липы и кницами из фанеры. Шпангоуты № 4, 7, 9, 12 и 15 - силовые. Самый нагруженный, пожалуй, девятый: к нему пристыкованы консоли крыла, а нижняя его часть служит уступом редана.

Стрингеры сосновые: 4 - сечением 20 X 20 мм и 12 - 16 X 10 мм. Снизу фюзеляжа, где борта стыкуются с днищем, проходят два скуловых стрингера из бука сечением 20 X 20 мм.

Важный элемент силового набора - коробчатый кильсон, расположенный ка днище лодки вдоль оси симметрии. Кильсон образован двумя полками (верхней и нижней), соединенными стенками из фанеры толщиной 2 мм. Ширина полок: 20 мм, толщина - переменная: в носовой части полки она равна 12 мм, в зоне родана - 20 мм. По всей длине кильсона его фанерные стенки подкреплены распорками.

Корпус обшит авиационной фанерой различной толщины: в носу - двух-миллиметровой, далее толщина постепенно увеличивается и и зоне редана достигает 7 мм. В целесообразности такого усиления мы убедились после столкновения с плавающей корягой. Мене» прочная обшивка не выдержала бы.

Ha бортах - фанера толщиной 2 мм, на гаргроте - 1 мм. Снаружи вся лодка оклеена слоем стеклоткани марки АСТТ(б)С, на эпоксидной смоле. Чтобы лодка не’ надирала воду и имела чистую гладкую поверхность, что важно для ее обтекания, обшивка зачищена, обработана эпоксидной шпаклевкой и окрашена синтетической эмалью, а затем покрыта слоем паркетного лака.

Большея часть оборудования и приборов экранолета размещена а носу лодки: буксирный крюк, ПВД - приемник воздушного давления ТП-156 (для замера скорости и высоты полета), штырь антенны радиостанции, аккумулятор.

В середине лодки - пилотская кабина. В ней друг за другом установлены два самолетных кресла с привязными ремнями и нишами для парашютов. Заднее кресло расположено вблизи центра тяжести экранолета, чтобы центровка машины меньше зависела от пассажира. Пол в кабине выполнен из листового полиэтилена, под ним размещена проводка управления элеронами, рулями высоты и поворота. Слева от пилотского кресла на панели находится ручка управления двигателем (сектор газа) и блок электротумблеров. В кабине, на шпангоуте № 4, крепится щиток приборов с указателями скорости, высоты, поворота и скольжения, а также вариометром, компасом, авиагоризонтом, тахометром, амперметром, вольтметром и индикаторы температуры головок цилиндров двигателя. Кабина закрыта прозрачным фонарем. Передняя его часть неподвижно закреплена на фюзеляжа, задняя - съемная. Замки фонаря позволяют легко открыть кабину. В аварийной ситуации экранолет можно бистро покинуть, сбросив фонарь.

К шпангоуту № 10 на специальном ложементе подвешен топливный бак. Он притянут к ложементу металлическими лентами, обшитыми войлоком. Узлы крепления киля и вспомогательного лонжерона крыла смонтированы не шпангоуте № 15.

Для облегчения транспортировки и ремонта экранолета его крыло сделано в виде двух консолей, пристыкованных к лодке болтами М10. Передние и задние стыковочные узлы - кронштейны из стали 30ХГСА. Они связаны с полками лонжеронов болтами М5 и рассчитаны, как и саме крыло, ка четырехкратную перегрузку с коэффициентом безопасности 1,5, то есть общий запас прочности равен 6. Такого запаса вполне достаточно для нормальной эксплуатации аппарата.

Консоль представляет собой однолонжеронную конструкцию с задней вспомогательной стенкой, четырьмя стрингерами к девятью нервюрами.

А - аэродинамическое сопротивление, Г - гидродинамическое сопротивление, С - суммарное, Т - располагаемая тяга, И - избыток тяги; а - режим плавания, б - глиссирование, в - преодоление «горба» сопротивления, г - отрыв от воды, д - полет.

Основной лонжерон состоит из двух полок, стенок и диафрагмы. Верхняя полка имеет толщину 34 мм у корня и 18 мм у конца лонжерона, нижняя - соответственно 25 и 18 мм. Ширина полок 38 мм по всему размаху. Склеены полки из набора сосновых реек эпоксидной смолой в специальном зажимном стапеле. Стенки лонжерона - на фанеры ВС-1 толщиной 1,5 мм. Причем для равной прочности волокна наружных слоев фанеры сориентированы под углом 45° к оси лонжерона. Диафрагма сделала из сосновых планок сечением 34X8 мм, приклеенных к полкам с помощью уголков из липы. Строительная высота лонжерона по размаху определяется толщиной профиля крыла.

Нервюры № 1, 2, 3, 4 и 5 – ферменной и ферменно-балочной конструкции из сосновых полок и раскосов, связанных между собой фанерными косынками. Нервюра № 1 - силовая, сплошная, на ней расположены узлы крепления консоли крыла. Нервюры № 6, 7, 8 и 9 - балочной конструкции, с полками из сосны и стенками из фанеры толщиной 1.5 мм.

Вспомагательный задний лонжерон подобен’ основному. Полки его - постоянной ширины 32 мм. Толщина верхней полки у корня лонжерона 20 мм, на конце - 12 мм; толщина нижней - соответственно 15 и 10 мм. С обеих сторон лонжерон обшит миллиметровой авиационной фанерой.

ОЧК расположена на конце консоли под углом к ней. Под фанерной обшивкой скрыты два лонжерона, носовой стрингер и шесть нервюр. Передний лонжерон коробчатого сечения с полками 25 X 12 мм и стенками из фанеры толщиной 1 мм. Задний лонжерон-швеллер с такими же полками и стенкой.

Элерон щелевого типа состоит из лонжерона, переднего, заднего стрингеров и пяти балочных нервюр. Лонжерон-швеллер с полками 15X10 мм и фанерной стенкой толщиной 1 мм. К лонжерону приклеены сосновые бобышки для установки на них узлов подвески элерона.

Внутренние полости крыла дважды покрыты олифой. Крыло ОЧК и элероны снаружи обтянуты полотном АСТ-100, покрыты четырьмя слоями лака НЦ-551 и окрашены белой алкидной краской.

Устойчивость на воде экранолету придают поплавки из пенопласте ПХВ-1. Оми оклеены слоем стеклоткани АСТГ(б)С, и прикреплены болтами М5 к консоли крыла не четырех ушках из стали 30ХГСА.

Хвостовое оперение - киль с рулем поворота и водяным рулем и стабилизатор с рулем высот. Киль обшит миллиметровой фанерой и представляет собой обычную конструкцию из двух лонжеронов, восьми нервюр и носка. Задний лонжерон-швеллер с сосновыми полками 28X14 мм и стенкой ка фанеры толщиной 1,5 мм. Передний лонжерон того же типа, что и задний, только полки у него поменьше - 14X34 мм. Для уменьшения малковки носки килевых нервюр изломаны и образуют с передней кромкой киля почти прямой угол.

Руль поворота состоит из обшитого фанерой носка, лонжерона, хвостового стрингера и тринадцати нервюр. Руль обшит тканью АСТ-100 и подвешен к килю в двух точках.

Стабилизатор в плане - трапециевидной формы, профиль его симметричный НАСА-0009, угод установки плюс 5° от строительной горизонтали экранолета. Каркас стабилизатора собран из лонжерона вспомогательной стенки переднего стрингера и 13 нервюр. Стабилизатор крепится болтами на четырех ушках киля. Носик стабилизатора зашит фанерой БС-1 толщиной 1 мм.

Лонжерон стабилизатора коробчатого сечения о сосновыми волками 20X12 мм и стенками из миллиметровой фанеры. На лонжероне есть два ушка для крепления подкосов из алюминиевых труб каплевидного сечения. Трубы придают жесткость комбинации «киль - стабилизатор».

Руль высоты аналогичен рулю поворотов; подвешивается к стабилизатору в трех точках. Руль и стабилизатор обтянуты тканью АСТ-100, покрыты краской и аэролаком.

Винтомоторная установка включает четырехтактный карбюраторный двухцилиндровый мотоциклетный двигатель М-63 мощностью 32 л. с., специальный понижающий зубчатый редуктор с передаточным отношением 1: 2,3, деревянный воздушный винт СДВ-2 фиксированного шага Ø1,6 м и моторную раму из стальных труб Ø 26 мм.

Двигатель крепится к мотораме болтами М8 через резиновые амортизаторы и установлен за кабиной экипажа на узлах силовых шпангоутов № 9 и 12. В режиме максимальной мощности двигатель развивает 4700 об/мин. От редуктора воздушный винт получает 1900-2100 об/мин. Это соответствует 95-100 кгс тяги.

Запуск винтомоторной установки осуществляется электростартером СТ-4. Он установлен на двигателе и через шестерни вращает его распределительный вал. Источником питания электростартера служит аккумулятор САМ-28 с напряжением 12 В. Чтобы система зажигания работала надежно, двигатель оборудован магнето «Катэк» с приводом от распределительного вала через промежуточный вал-удлинитель.

Стандартные карбюраторы не удовлетворяли нас своей несогласованной работой, особенно при резких изменениях режимов работы двигателя. Мы заменили их на один карбюратор «Вебер-32 ДСР».

Как видите, конструкция ЭСКА-1 в принципе несложна. Преобладают дерево, фанера, ткань. Металлические детали сведены к минимуму, и на их изготовление идут недефицитные марки сталей и сплавов. Внешне экранолет тоже довольно прост, сложных криволинейных поверхностей мало. Поэтому, как мы считаем, ЭСКА-1 легко воспроизвести тем, кто намерен строить экранолет, взяв за основу именно такую деревянную конструкцию.

ТЕХНИЧЕСКИЕ ДАННЫЕ ЭКРАНОЛЕТА ЭСКА-1

Размах, м……………6,9

Длина, м……………7,8

Высота, …………….2,2

Корневая хорда крыла, м……..4,11

Концевая хорда, м………..1,0

Сужение крыла …………4,11

Удлинение …………..1,996

Средняя аэродинамическая хорде (САХ), м. 2,873

Площадь крыла, м2……….13,15

Общая несущая площадь, м2……13,39

Площадь горизонтального оперения, м?. . . 3,0

Площадь вертикального оперения, м; . . . . 3,6

Месса конструкции, кг…….234

Полная полетная масса, кг……..450

Мощность двигателя, л. с……….32

Заметили ошибку? Выделите ее и нажмите Ctrl+Enter , чтобы сообщить нам.