Электробезопасность

Биологическая ниша. Дайте определение экологической ниши. Как вы понимаете термин «экологическая ниша человека»? Концепция экологической ниши вида

Модель представлена как n-мерный куб на осях которого отложены экологические факторы. По каждому фактору у вида есть диапазон в котором он может существовать (экологическая валентность). Если провести проекции от крайних точек диапазонов каждой оси факторов мы получим n-мерную фигуру, где n - количество значимых для вида экологических факторов. Модель в основном умозрительна, но позволяет получить хорошее представление об экологической нише . По Хатчинсону экологическая ниша может быть:

  • фундаментальной - определяемой сочетанием условий и ресурсов, позволяющим виду поддерживать жизнеспособную популяцию;
  • реализованной - свойства которой обусловлены конкурирующими видами.

Допущения модели:

  1. Реакция на один фактор не зависит от воздействия другого фактора;
  2. Независимость факторов друг от друга;
  3. Пространство внутри ниши однородное с одинаковой степенью благоприятности.

Модель n-мерной ниши

Это различие подчёркивает, что межвидовая конкуренция приводит к снижению плодовитости и жизнеспособности и что в фундаментальной экологической нише может быть такая часть, занимая которую вид в результате межвидовой конкуренции не в состоянии больше жить и успешно размножаться. Эта часть фундаментальной ниши вида отсутствует в его реализованной нише . Таким образом, реализованная ниша всегда входит в состав фундаментальной или равна ей.

Принцип конкурентного исключения

Суть принципа конкурентного исключения, также известного как принцип Гаузе , состоит в том, что каждый вид имеет свою собственную экологическую нишу . Никакие два разных вида не могут занять одну и ту же экологическую нишу. Сформулированный таким образом принцип Гаузе подвергался критике. Например, одним из известных противоречий этому принципу является «планктонный парадокс». Все виды живых организмов, относящихся к планктону , живут на очень ограниченном пространстве и потребляют ресурсы одного рода (главным образом солнечную энергию и морские минеральные соединения). Современный подход к проблеме разделения экологической ниши несколькими видами указывает, что в некоторых случаях два вида могут разделять одну экологическую нишу, а в некоторых такое совмещение приводит один из видов к вымиранию.

Вообще, если речь идёт о конкуренции за определённый ресурс, становление биоценозов связано с расхождением экологических ниш и уменьшением уровня межвидовой конкуренции :стр.423 . При таком варианте правило конкурентного исключения подразумевает пространственное (иногда функциональное) разобщение видов в биоценозе. Абсолютное вытеснение, при подробном изучении экосистем , зафиксировать почти невозможно :стр.423

Закон константности В. И. Вернадского

Количество живого вещества природы (для данного геологического периода) есть константа.

Согласно этой гипотезе, любое изменение количества живого вещества в одном из регионов биосферы должно быть компенсировано в каком-либо другом регионе. Правда, в соответствии с постулатами видового обеднения, высокоразвитые виды и экосистемы чаще всего будут заменяться эволюционно объектами более низкого уровня. Кроме того, будет происходить процесс рудерализации видового состава экосистем, и «полезные» для человека виды будут замещаться менее полезными, нейтральными или даже вредными.

Следствием этого закона есть правило обязательного заполнения экологических ниш. (Розенберг и др, 1999)

Правило обязательного заполнения экологической ниши

Экологическая ниша не может быть пустой. Если ниша пустеет в результате вымирания какого-то вида, то она тут же заполняется другим видом.

Среда обитания обычно состоит из отдельных участков («пятен») с благоприятными и неблагоприятными условиями; эти пятна нередко доступны лишь временно, и возникают они непредсказуемо как во времени, так и в пространстве.

Свободные участки или «бреши» в местообитаниях возникают непредсказуемо во многих биотопах. Пожары или оползни могут приводить к образованию пустошей в лесах; шторм может оголить открытый участок морского берега, а прожорливые хищники где угодно могут истребить потенциальных жертв. Эти освободившиеся участки неизменно заселяются вновь. Однако самыми первыми поселенцами не обязательно будут те виды, которые в течение длительного времени способны успешно конкурировать с другими видами и вытеснять их. Поэтому сосуществование преходящих и конкурентоспособных видов возможно так долго, как с подходящей частотой появляются незаселенные участки. Преходящий вид обычно первым заселяет свободный участок, осваивает его и размножается. Более конкурентоспособный вид заселяет эти участки медленно, но если заселение началось, то со временем он побеждает преходящий вид и размножается. (Бигон и др., 1989)

Экологическая ниша человека

Человек как биологический вид занимает свою собственную экологическую нишу. Человек может обитать в тропиках и субтропиках, на высотах до 3-3,5 км над уровнем моря. Реально в настоящее время человек живёт в значительно больших пространствах. Человек расширил свободную экологическую нишу благодаря использованию различных приспособлений: жилища, одежды, огня и пр.

Источники и примечания


Wikimedia Foundation . 2010 .

Называется его экологической нишей. Экологическую нишу вида характеризуют и границы выносливости его по отношению к разным факторам, и характер связи с другими видами, и образ жизни, и распределение в пространстве.

Часто понятие «экологическая ниша» рассматривают как синоним понятия «место обитания », но понятие ниши значительно объемнее и содержательнее. Американский эколог Одум образно назвал место обитания - «адресом» организма (вида), а экологическую нишу - его «профессией».

На одном месте обитания живет большое количество организмов разных видов. Например, смешанный лес - это место обитания для сотен видов растений и животных, но у каждого из них своя и только одна «профессия» - экологическая ниша.

В лесу сходное место обитания имеют лось и белка, но ниши их совершенно разные: белка живет в основном в кронах деревьев, питается семенами и плодами, там же и размножается. Весь жизненный цикл лося связан с подпологовым пространством: питание зелеными растениями или их частями, размножение и укрытие в зарослях.

Элементы и правила экологической ниши

Элементы экологической ниши:

  • пища (виды);
  • время и способы питания;
  • место размножения;
  • место укрытия.

Экологические ниши существуют по определенным правилам:

  • чем шире требования (пределы толерантности) вида к любому или многим экологическим факторам , тем больше то пространство, которое он может занимать в природе, а значит, тем шире его распространение;
  • если режим любого, хотя бы одного экологического фактора в месте обитания особей одного вида изменился таким образом, что его значения выходят за пределы ниши, то это означает разрушение ниши, т. е ограничение или невозможность сохранения вида в данном месте обитания. С понятием «экологическая ниша» связаны и другие важные закономерности - каждый вид имеет свою, только ему присущую экологическую нишу, т. е. сколько на Земле видов, столько и экологических ниш (2,2 млн видов живых организмов, из них 1,7 млн видов животных). Два разных вида (даже очень близких) не могут занимать одну экологическую нишу в пространстве;
  • в каждой экосистеме имеются виды, которые претендуют на одну и ту же нишу или ее элементы (пищу, укрытия). В таком случае неизбежна конкуренция, борьба за обладание нишей. Подобные отношения отражает правило Гаузе: если два вида со сходными требованиями к среде (питанию, поведению, местам размножения) вступают в конкурентные отношения, то один из них должен погибнуть либо изменить свой образ жизни и занять новую экологическую нишу.

Экологическая ниша - это совокупность всех требований вида (

Введение

В данной работе я хочу Вас познакомить с такими понятиями, как экологическая ниша, лимитирующие факторы, подробнее рассказать про закон толерантности.

Экологи?ческая ни?ша -- место, занимаемое видом в биоценозе, включающее комплекс его биоценотических связей и требований к факторам среды.

Понятие экологической ниши было введено для обозначения роли, которую тот или иной вид играет в сообществе. Под эконишей следует понимать образ жизни и прежде всего способ питания организма.

Экологическая ниша - абстрактное понятие, это совокупность всех факторов среды, в пределах которых возможно существование вида в природе. Этот термин введен в 1927 году Чарльзом Элтоном. Она включает химические, физические и биотические факторы, необходимые организму для жизни, и определяется его морфологической приспособленностью, физиологическими реакциями и поведением. В разных частях света и на разных территориях встречаются виды, неодинаковые в систематическом отношении, но сходные по экологии - их называют экологически эквивалентными.

Экологическая ниша представляет собой место, занимаемое видом (точнее - его популяцией) в сообществе (биоценозе). Взаимодействие данного вида (популяции) с партнерами по сообществу, в которое он входит в качестве сочлена, определяет его место в круговороте веществ, обусловленном пищевыми и конкурентными связями в биоценозе. Термин "Экологическая ниша" предложен американским ученым Дж. Гринеллом (1917). Трактовка экологической ниши как положения вида в цепях питания одного или нескольких биоценозов была дана английским экологом Ч. Элтоном (1927). Подобное толкование понятия экологическая ниша позволяет дать количественную характеристику экологической ниши для каждого вида или для его отдельных популяций.

Лимитирующий фактор - фактор среды, выходящий за пределы выносливости организма. Лимитирующий фактор ограничивает любое проявление жизнедеятельности организма. С помощью лимитирующих факторов регулируется состояние организмов и экосистем.

Закон толерантности Шелфорда - в экологии - закон, согласно которому существование вида определяется лимитирующими факторами, находящимися не только в минимуме, но и в максимуме. Закон толерантности расширяет закон минимума Либиха.

Закон минимума Ю.Либиха - в экологии - концепция, согласно которой существование и выносливость организма определяется самым слабым звеном в цепи его экологических потребностей.

Согласно закону минимума жизненные возможности организмов лимитируют те экологические факторы, количество и качество которых близки к необходимому организму или экосистеме минимуму.

Экологическая ниша

Любой вид организмов приспособлен для определенных условий существования и не может произвольно менять среду обитания, пищевой рацион, время питания, место размножения, убежища и т.п. Весь комплекс отношений к подобным факторам определяет место, которое природа выделила данному организму, и роль, которую он должен сыграть во всеобщем жизненном процессе. Все это объединяется в понятии экологической ниши.

Под экологической нишей понимают место организма в природе и весь образ его жизнедеятельности, его жизненный статус, закрепленный в его организации и адаптациях.

В разное время понятию экологической ниши приписывали разный смысл. Сначала словом “ниша” обозначалась основная единица распределения вида в пределах пространства экосистемы, диктуемого структурными и инстинктивными ограничениями данного вида. Например, белки живут на деревьях, лоси - на земле, одни виды птиц гнездятся на ветвях, другие в дуплах и т.д. Здесь понятие экологическая ниша трактуется в основном как местообитание, или пространственная ниша. Позднее термину “ниша” был придан смысл “функционального статуса организма в сообществе”. В основном это касалось места данного вида в трофической структуре экосистемы: вид пищи, время и место питания, кто является хищником для данного организма и т.д. Теперь это называют трофической нишей. Затем было показано, что нишу можно рассматривать как некий гиперобъем в многомерном пространстве, построенном на базе факторов среды обитания. Этот гиперобъем ограничивал диапазон факторов, в котором может существовать данный вид (гиперпространственная ниша).

То есть в современном понимании экологической ниши можно выделить по крайней мере три аспекта: физическое пространство, занимаемое организмом в природе (местообитание), его отношение к факторам среды и к соседствующим с ним живым организмам (связи), а также его функциональную роль в экосистеме. Все эти аспекты проявляются через строение организма, его адаптации, инстинкты, жизненные циклы, жизненные “интересы” и т.п. Право организма выбирать свою экологическую нишу ограничено довольно узкими рамками, закрепленными за ним от рождения. Однако его потомки могут претендовать на другие экологические ниши, если в них произошли соответствующие генетические изменения.

С использованием концепции экологической ниши правило конкурентного исключения Гаузе можно перефразировать следующим образом: два разных вида не могут длительное время занимать одну экологическую нишу и даже входить в одну экосистему; один из них должен либо погибнуть, либо измениться и занять новую экологическую нишу. Кстати сказать, внутривидовая конкуренция часто сильно уменьшается именно потому, что на разных стадиях жизненного цикла многие организмы занимают разные экологические ниши. Например, головастик - растительноядное животное, а взрослые лягушки, обитающие в том же пруду, - хищники. Другой пример: насекомые на стадии личинки и взрослой особи.

На одной территории в экосистеме может жить большое количество организмов разных видов. Это могут быть близкородственные виды, но каждый из них обязан занять свою уникальную экологическую нишу. В этом случае данные виды не вступают в конкурентные отношения и в определенном смысле становятся нейтральными друг к другу. Однако зачастую экологические ниши разных видов могут перекрываться по крайней мере по одному из аспектов, например, по местообитанию или по питанию. Это приводит к межвидовой конкурентной борьбе, которая обычно не носит жесткого характера и способствует четкости разграничения экологических ниш.

Таким образом, в экосистемах реализуется закон, аналогичный принципу запрета Паули в квантовой физике: в данной квантовой системе в одном и том же квантовом состоянии не может находиться более одного фермиона (частиц с полуцелым спином, типа электронов, протонов, нейтронов и т.п.). В экосистемах также происходит квантование экологических ниш, которые стремятся четко локализоваться по отношению к другим экологическим нишам. Внутри данной экологической ниши, то есть внутри популяции, которая занимает эту нишу, продолжается дифференциация на более частные ниши, которые занимает каждая конкретная особь, определяющая статус данной особи в жизни данной популяции.

Происходит ли подобная дифференциация на более низких уровнях системной иерархии, например, на уровне многоклеточного организма? Здесь также можно выделить различные “виды” клеток и более мелких “телец”, строение которых определяет их функциональное назначение внутри организма. Некоторые из них неподвижны, их колонии образуют органы, назначение которых имеет смысл только в отношении организма в целом. Имеются и подвижные простейшие организмы, живущие, казалось бы, своей “личной” жизнью, которая тем не менее полностью удовлетворяет потребностям всего многоклеточного организма. Так например, красные кровяные тельца делают только то, что они “умеют”: в одном месте связывают кислород, а в другом месте его высвобождают. Это их “экологическая ниша”. Жизнедеятельность каждой клетки организма построена таким образом, что, “живя для себя”, она одновременно трудится на благо всего организма. Подобный труд вовсе не утомляет, так же как нас не утомляет процесс приема пищи, или занятие любимым делом (если, конечно, все это в меру). Клетки устроены так, что по-другому они жить просто не могут, так же как пчела не может жить, не собирая с цветов нектар и пыльцу (наверное, это приносит ей какое-то наслаждение).

Таким образом, вся природа “снизу доверху” похоже пронизана идеей дифференциации, которая в экологии оформилась в понятие экологической ниши, которая в определенном смысле аналогична органу или подсистеме живого организма. Сами эти “органы” формируются под действием внешней среды, то есть их формирование подчинено требованиям надсистемы, в нашем случае - биосферы.

Положение вида, которое он занимает в общей системе биоценоза, комплекс его биоценотических связей и требований к абиотическим факторам среды называют экологической нишей вида.

Концепция экологической ниши оказалась очень плодотворной для понимания законов совместной жизни видов. Над ее развитием работали многие экологи: Дж. Гриннелл, Ч. Элтон, Г. Хатчинсон, Ю. Одум и др.

Понятие «экологическая ниша» следует отличать от понятия «местообитание». В последнем случае подразумевается та часть пространства, которая заселена видом и которая обладает необходимыми абиотическими условиями для его существования. Экологическая ниша вида зависит не только от абиотических условий среды, но и в не меньшей мере от его биоценотического окружения. Характер занимаемой экологической ниши определяется как экологическими возможностями вида, так и тем, насколько эти возможности могут быть реализованы в конкретных биоценозах. Это характеристика того образа жизни, который вид может вести в данном сообществе.

Г. Хатчинсон выдвинул понятия фундаментальной и реализованной экологической ниши. Под фундаментальной понимается весь набор условий, при которых вид может успешно существовать и размножаться. В природных биоценозах, однако, виды осваивают далеко не все пригодные для них ресурсы вследствие, прежде всего, конкурентных отношений.Реализованная экологическая ниша – это положение вида в конкретном сообществе, где его ограничивают сложные биоценотические отношения. Иными словами, фундаментальная экологическая ниша характеризует потенциальные возможности вида, а реализованная – ту их часть, которая может осуществиться в данных условиях, при данной доступности ресурса. Таким образом, реализованная ниша всегда меньше, чем фундаментальная.

В экологии широко обсуждается вопрос о том, сколько экологических ниш может вместить биоценоз и сколько видов какой-либо конкретной группы, имеющих близкие требования к среде, могут ужиться вместе.

Специализация вида по питанию, использованию пространства, времени активности и другим условиям характеризуется как сужение его экологической ниши, обратные процессы – как ее расширение. На расширение или сужение экологической ниши вида в сообществе большое влияние оказывают конкуренты. Правило конкурентного исключения, сформулированное Г. Ф. Гаузе для близких по экологии видов, может быть выражено таким образом, что два вида не уживаются в одной экологической нише.

Эксперименты и наблюдения в природе показывают, что во всех случаях, когда виды не могут избежать конкуренции за основные ресурсы, более слабые конкуренты постепенно вытесняются из сообщества. Однако в биоценозах возникает много возможностей хотя бы частичного разграничения экологических ниш близких по экологии видов.

Выход из конкуренции достигается благодаря расхождению требований к среде, изменению образа жизни, что, другими словами, является разграничением экологических ниш видов. В этом случае они приобретают способность сосуществовать в одном биоценозе. Каждый из живущих вместе видов в отсутствие конкурента способен на более полное использование ресурсов. Это явление легко наблюдать в природе. Так, травянистые растения ельника способны довольствоваться небольшим количеством почвенного азота, которое остается от перехвата его корнями деревьев. Однако если на ограниченной площадке обрубить корни этих елей, условия азотного питания трав улучшаются и они бурно идут в рост, принимая густо-зеленую окраску. Улучшение условий жизни и увеличение численности какого-либо вида в результате удаления из биоценоза другого, близкого по экологическим требованиям, называется конкурентным высвобождением.

Разделение совместно живущими видами экологических ниш с частичным их перекрыванием – один из механизмов устойчивости природных биоценозов. Если какой-либо из видов резко снижает свою численность или выпадает из состава сообщества, его роль берут на себя другие. Чем больше видов в составе биоценоза, тем ниже численность каждого из них, тем сильнее выражена их экологическая специализация. В этом случае говорят о «более плотной упаковке экологических ниш в биоценозе».

У близкородственных видов, живущих вместе, обычно наблюдаются очень тонкие разграничения экологических ниш. Так, пасущиеся в африканских саваннах копытные по-разному используют пастбищный корм: зебры обрывают в основном верхушки трав, антилопы гну кормятся тем, что оставляют им зебры, выбирая при этом определенные виды растений, газели выщипывают самые низкие травы, а антилопы топи довольствуются высокими сухими стеблями, оставшимися после других травоядных. Такое же «разделение труда» в южноевропейских степях осуществляли когда-то дикие лошади, сурки и суслики (рис. 92).

Рис. 92. Разные виды травоядных поедают траву на разной высоте в африканских саваннах (верхние ряды) и в степях Евразии (нижние ряды) (по Ф. Р. Фуэнте, 1972; Б. Д. Абатурову, Г. В. Кузнецову, 1973)

В наших зимних лесах насекомоядные птицы, кормящиеся на деревьях, также избегают конкуренции друг с другом за счет разного характера поиска. Например, поползни и пищухи собирают пищу на стволах. При этом поползни стремительно обследуют дерево, быстро схватывая попадающихся на глаза насекомых или семена, оказавшиеся в крупных трещинах коры, тогда как мелкие пищухи тщательно обшаривают на поверхности ствола малейшие щелки, в которые проникает их тонкий шиловидный клюв. Зимой в смешанных стайках большие синицы ведут широкий поиск на деревьях, в кустах, на пнях, а часто и на снегу; синицы-гаички обследуют преимущественно крупные ветви; длиннохвостые синицы ищут корм на концах ветвей; мелкие корольки тщательно обшаривают верхние части крон хвойных.

Муравьи существуют в природных условиях многовидовыми ассоциациями, члены которых различаются по образу жизни. В лесах Подмосковья чаще всего обнаруживается такая ассоциация видов: доминантный вид (Formica rufa, F. aquilonia или Lasius fuliginosus) занимает несколько ярусов, в почве активен L. flavus, в подстилке леса – Myrmica rubra, напочвенный ярус осваивают L. niger и F. fusca, деревья – Camponotus herculeanus. Специализация к жизни в разных ярусах отражается в жизненной форме видов. Кроме разделения в пространстве, муравьи отличаются и по характеру добывания пищи, по времени суточной активности.

В пустынях наиболее развит комплекс муравьев, собирающих пищу на поверхности почвы (герпетобионтов). Среди них выделяются представители трех трофических групп: 1) дневные зоонекрофаги – активны в самое жаркое время, питаются трупами насекомых и активными днем мелкими живыми насекомыми; 2) ночные зоофаги – охотятся на малоподвижных насекомых с мягкими покровами, которые появляются на поверхности только ночью, и на линяющих членистоногих; 3) карпофаги (дневные и ночные) – поедают семена растений.

Совместно могут обитать по нескольку видов из одной трофической группы. Механизмы выхода из конкуренции и разграничения экологических ниш при этом следующие.

1. Размерная дифференциация (рис. 93). Например, средние веса рабочих особей трех наиболее обычных в песках Кызылкумов дневных зоонекрофагов относятся как 1:8:120. Примерно такое же соотношение весов у некрупной кошки, рыси и тигра.

Рис. 93. Сравнительные размеры четырех видов муравьев из группы дневных зоонекрофагов в песчаной пустыне Центральных Каракумов и распределение добычи трех видов по весовым классам (по Г. М. Длусскому, 1981): 1 – средний и крупный рабочие Cataglyphis setipes; 2 – С. pallida; 3 – Acantholepis semenovi; 4 – Plagiolepis pallescens

2. Поведенческие различия заключаются в разной стратегии фуражировки. Муравьи, которые создают дороги и используют мобилизацию носильщиков для переноса в гнездо обнаруженной пищи, питаются преимущественно семенами растений, образующих куртины. Муравьи, фуражиры которых работают как одиночные сборщики, собирают в основном семена растений, распределенных дисперсно.

3. Пространственная дифференциация. В пределах одного яруса сбор пищи разными видами может быть приурочен к разным участкам, например на открытых местах или под кустиками полыни, на песчаных или глинистых площадках и т. д.

4. Различия во времени активности относятся преимущественно ко времени суток, но у некоторых видов отмечены несовпадения активности и по сезонам года (преимущественно весенняя или осенняя активность).

Экологические ниши видов изменчивы в пространстве и во времени. Они могут быть резко разграничены в индивидуальном развитии в зависимости от стадии онтогенеза, как, например, у гусениц и имаго чешуекрылых, личинок и жуков майского хруща, головастиков и взрослых лягушек. В этом случае меняется и среда обитания, и все биоценотическое окружение. У других видов экологические ниши, занимаемые молодыми и взрослыми формами, более близки, но тем не менее между ними всегда имеются различия. Так, взрослые окуни и их мальки, живущие в одном и том же озере, используют для своего существования разные энергетические источники и входят в разные цепи питания. Мальки живут за счет мелкого планктона, взрослые – типичные хищники.

Ослабление межвидовой конкуренции приводит к расширению экологической ниши вида. На океанических островах с бедной фауной ряд птиц по сравнению с их сородичами на материке заселяет более разнообразные местообитания и расширяет спектр кормов, так как не сталкивается при этом с конкурирующими видами. У островных обитателей отмечается даже повышенная изменчивость формы клюва как показатель расширения характера кормовых связей.

Если межвидовая конкуренция сужает экологическую нишу вида, не давая проявиться всем его потенциям, то внутривидовая конкуренция, наоборот, способствует расширению экологических ниш. При возросшей численности вида начинается использование дополнительных кормов, освоение новых местообитаний, появление новых биоценотических связей.

В водоемах растения, полностью погруженные в воду (элодея, роголистник, уруть), оказываются в иных условиях температуры, освещенности, газового режима, чем плавающие на поверхности (телорез, водокрас, ряска) или укореняющиеся на дне и выносящие листья на поверхность (кувшинка, кубышка, виктория). Различаются они и взаимосвязями со средой. Эпифиты тропических лесов занимают сходные, но все же не идентичные ниши, так как относятся к разным экологическим группам по отношению к свету и воде (гелиофиты и сциофиты, гигрофиты, мезофиты и ксерофиты). Разные эпифитные орхидеи имеют узкоспециализированных опылителей.

В зрелом широколиственном лесу деревья первого яруса – дуб обыкновенный, вяз гладкий, клен платановидный, липа сердцелистная, ясень обыкновенный имеют сходные жизненные формы. Древесный полог, образованный их кронами, оказывается в одном горизонте, в сходных условиях среды. Но внимательный анализ показывает, что они по-разному участвуют в жизни сообщества и, следовательно, занимают разные экологические ниши. Эти деревья различаются по степени светолюбия и теневыносливости, срокам цветения и плодоношения, способам опыления и распространения плодов, составу консортов и проч. Дуб, вяз и ясень – анемофильные растения, но насыщение среды их пыльцой происходит в разные сроки. Клен и липа – энтомофилы, хорошие медоносы, но цветут в разное время. У дуба – зоохория, у остальных широколиственных деревьев – анемохория. Состав консортов у всех разный.

Если в широколиственном лесу кроны деревьев находятся в одном горизонте, то активные корневые окончания располагаются на разной глубине. Корни дуба проникают наиболее глубоко, выше располагаются корни клена и еще более поверхностно – ясеня. Опад разных видов деревьев утилизируется с разной скоростью. Листья липы, клена, вяза, ясеня к весне почти полностью разлагаются, а листья дуба и весной еще образуют рыхлую лесную подстилку.

В соответствии с представлениями Л. Г. Раменского об экологической индивидуальности видов и с учетом того, что виды растений в сообществе по-разному участвуют в освоении и преобразовании среды и трансформации энергии, можно считать, что в сложившихся фитоценозах каждый вид растения имеет свою экологическую нишу.

В онтогенезе растения, как и многие животные, меняют экологическую нишу. С возрастом они более интенсивно используют и преобразуют среду. Переход растения в генеративный период заметно расширяет круг консортов, меняет размер и напряженность фитогенного поля. Средообразующая роль стареющих, сенильных растений убывает. Они теряют многих консортов, но увеличивается роль связанных с ними деструкторов. Продукционные процессы ослабляются.

У растений имеет место перекрывание экологических ниш. Оно усиливается в отдельные периоды при ограничении ресурсов среды, но поскольку виды используют ресурсы индивидуально, избирательно и с разной интенсивностью, конкуренция в устойчивых фитоценозах ослабляется.

Рис. 94. Корреляция между разнообразием лиственных ярусов и видовым разнообразием птиц (индексы Шеннона по Макартуру из Э. Пианка, 1981)

Список литературы

    Шилов И. А. Экология. М.: Высшая школа, 1997.

    Христофорова Н.К. Основы экологии. Владивосток: Дальнаука, 1999.

    Гиляров А. М. Популяционная экология. М.: Изд-во МГУ, 1990.

Экологическая ниша

Экологическая ниша, место, занимаемое видом (точнее -- его популяцией) в сообществе (биоценозе). Взаимодействие данного вида (популяции) с партнёрами по сообществу, в которое он входит в качестве сочлена, определяет его место в круговороте веществ, обусловленном пищевыми и конкурентными связями в биоценозе. Термин "Э. н." предложен американским учёным Дж. Гринеллом (1917). Трактовка Э. н. как положения вида в цепях питания одного или нескольких биоценозов была дана английским экологом Ч. Элтоном (1927). Подобное толкование понятия Э. н. позволяет дать количественную характеристику Э. н. для каждого вида или для его отдельных популяций. Для этого сопоставляют в системе координат обилие вида (число особей или биомассу )с показателями температуры, влажности или любого другого фактора среды. Таким путём можно выделить зону оптимума и пределы выносимых видом отклонений -- максимум и минимум каждого фактора или совокупности факторов. Как правило, каждый вид занимает определённую Э. н., к существованию в которой он приспособлен всем ходом эволюционного развития. Место, занимаемое видом (его популяцией) в пространстве (пространственная Э. н.), чаще называют местообитанием .

Модель экологической ниши, предложенная Г. Е. Хатчинсоном

довольно проста: достаточно на ортогональных проекциях отложить значения интенсивности различных факторов, а из точек пределов толерантности восстановить перпендикуляры, то ограниченное ими пространство и будет соответствовать экологической нише данного вида. Экологическая ниша -- это область комбинаций таких значений факторов среды, в пределах которой данный вид может существовать неограниченно долго.

Например, для существования наземного растения достаточно определенного сочетания температуры и влажности, и в этом случае можно говорить о двумерной нише. Для морского животного уже необходимо кроме температуры еще как минимум два фактора -- соленость и концентрация кислорода -- тогда уже следует говорить о трехмерной нише, и т. д. На самом деле этих факторов множество и ниша многомерна.

Экологическую нишу, определяемую только физиологическими особенностями организмов, называют фундаментальной, а ту, в пределах которой вид реально встречается в природе, --- реализованной.

Реализованная ниша -- это та часть фундаментальной ниши, которую данный вид, популяция в состоянии «отстоять» в конкурентной борьбе. Конкуренция, по Ю. Одуму (1975, 1986), -- отрицательные взаимодействия двух организмов, стремящихся к одному и тому же (табл. 4.1). Межвидовая конкуренция -- это любое взаимодействие между популяциями, которое вредно сказывается на их росте и выживании. Конкуренция проявляется в виде борьбы видов за экологические ниши.

есуществует двух различных видов, занимающих одинаковые экологические ниши, но есть близкородственные виды, часто настолько сходные, что им требуется, по существу, одна и та же ниша. В этом случае, когда ниши частично перекрываются, возникает особо жесткая конкуренция, но в конечном итоге нишу занимает один вид. Явление экологического разобщения близкородственных (или сходных по иным признакам) видов получило название принципа конкурентного исключения, или принципа Гаузе, в честь ученого, доказавшего его существование экспериментально в 1934 г.

Нейтрализм -- это такая форма биотических взаимоотношений, когда сожительство двух видов на одной территории не влечет за собой ни положительных, ни отрицательных последствий для них. В этом случае виды не связаны непосредственно друг с другом и даже не контактируют между собой. Например, белки и лоси, обезьяны и слоны и т. п. Отношения нейтрализма характерны для богатых видами сообществ.

Аменсализм -- это биотические отношения, при которых происходит торможение роста одного вида (аменсала) продуктами выделения другого. Такие отношения обычно относят к прямой конкуренции и называют антибиозом. Наиболее хорошо они изучены у растений, которые применяют различные ядовитые вещества в борьбе с конкурентами за ресурсы, и данное явление называют аллелопатия.

Аменсализм весьма распространен в водной среде. Например, сине-зеленые водоросли, вызывая цветение воды, тем самым отравляют водную фауну, а иногда даже скот, который приходит на водопой. Аналогичные «способности» проявляют и другие водоросли. Они выделяют пептиды, хинон, антибиотики и другие вещества, которые ядовиты даже в малых дозах. Называют эти яды эктокринными веществами.

Хищниками называют животных, питающихся другими животными, которых они ловят и умервщляют. Для хищников характерно охотничье поведение. Изобилие насекомых, их малые размеры и легкодоступность превращают деятельность плотоядных хищников, обычно птиц, в простое «собирательство»

добычи, подобно тому как собирают семена,"зерна птицы, пи-таюшиеся ими. Насекомоядные хищники по способу овладела пищей приближаются к пастьбе травоядных животных. Некоторые птицы могут питаться и насекомыми и семенами.

Итак, наиболее жесткая конкуренция проявляется тогда, когда контакт между популяциями установлен недавно, например, вследствие изменений, произошедших в экосистеме под влиянием деятельности человека. Именно поэтому непродуманное вмешательство человека в структуру биоценоза нередко приводит к эпидемическим вспышкам.

Экологическое дублирование

Известный русский лесовед Г.Ф.Морозов (1912), опираясь на учение В. В. Докучаева и работы К. Мебиуса, сформулировал правило:

в природе не существует полезных и вредных птиц, полезных и вредных насекомых, там все служит друг другу и взаимоприспособлено.

Современная формулировка правила Мебиуса--Морозова - правила взаимоприспособленности организмов в биоценозе - гласит:

виды в биоценозе приспособлены друг к другу настолько, что их сообщество составляет внутреннее противоречивое, но единое и взаимно увязанное системное целое.

Ю. Одум установил правило «метаболизм и размеры особей», которое в идеальных условиях имеет всеобщее значение:

при неизменном энергетическом потоке в пищевой сети или цепи более мелкие наземные организмы с высоким удельным метаболизмом создают относительно меньшую биомассу, чем крупные. Значительная часть энергии уходит на поддержание обмена веществ.

Правило Ю. Одума особенно важно в связи с тем, что из-за антропогенного нарушения природной среды происходит измельчение «средней» особи живого на суше - крупные звери и птицы истреблены и вообще все крупные представители растительного и животного мира становятся все более и более раритетными. Поэтому неминуемо следует ожидать общее снижение относительной продуктивности организмов суши и термодинамический разлад в сообществах и биоценозах.

Если же измельчание особей ведет к производству относительно меньшего количества биомассы, то ее удельный выход с единицы площади (из-за более полного заселения пространства) увеличивается. Данный эмпирический факт Н. Ф. Реймерс назвал законом удельной продуктивности:

никогда слоны не дадут той биомассы и продукции с единицы площади, которую способна дать саранча и тем более совсем мелкие беспозвоночные.

Исчезновение видов, представленных крупными особями, меняет вещественно-энергетическую структуру биоценозов. Так как энергетический поток, проходящий через биоценоз в целом, практически не меняется (иначе бы произошла смена типа биоценоза), включаются механизмы биоценотического или экологического дублирования: организмы одной трофической группы или уровня экологической пирамиды закономерно замещают друг друга. Правило (принцип) экологического дублирования Н. Ф. Реймерс сформулировал следующим образом:

исчезающий или уничтожаемый вид живого в рамках одного уровня экологической пирамиды заменяет другой функционально-биоценотически аналогичный. Замена происходит по схеме: мелкий сменяет крупного, эволюционно нижеорганизованный - более высокоорганизованного, более генетически лабильный и мутабельный - менее генетически изменчивого.

Поскольку экологическая ниша в биоценозе не может пустовать, экологическое дублирование происходит обязательно. Действительно, копытных в степи сменяют грызуны, а в ряде случаев растительноядные насекомые. При отсутствии хищников на водоразделах южного Сахалина в зарослях бамбука их роль выполняет серая крыса.

Несколько позже правила смены видов в биоценозах Н. Ф. Реймерс сформулировал в более популярной форме:

  • * «свято место пусто не бывает»;
  • * крупные организмы исчезают раньше, и их сменяют мелкие;
  • * как правило, более эволюционно высокоорганизованные виды бывают вытеснены менее высокоорганизованными, быстрее размножающимися существами;
  • * всегда побеждают те, кто легче и быстрее изменяется, в том числе генетически.

Проанализировав описанные теоретические основы закономерностей дублирования в биоценозах, Н. Ф. Реймерс (1973) выдвинул гипотетическую теорию механизма возникновения новых инфекционных заболеваний человека путем замены видов на неблагоприятные, опубликованную из-за существовавших ограничений только в 1983 г.

Он предположил, что в одних случаях возникает совершенно новая экологическая ниша, а в других случаях борьба с существующими заболеваниями и уничтожение их возбудителей освобождает такую нишу в человеческих популяциях.

Так, за 13 лет до открытия вируса иммунодефицита человека (ВИЧ) - возбудителя синдрома приобретенного иммунного дефицита (СПИД) - была предсказана вероятность появления «гриппоподобного заболевания с высокой летальностью». Организм человека - это место жизни многих, в том числе болезнетворных организмов. Когда многие болезни были побеждены и уничтожены их возбудители, появилась свободная экологическая ниша. Ее и заполнил вирус СПИДа, соответствующий приведенным свойствам: мелок, примитивен, относительно быстро размножается и очень изменчив.

Установлено, что в биоценозах существует столько видов, сколько необходимо для максимальной утилизации приходящей энергии и обеспечения круговорота веществ в пределах энергетического потока. В связи с этим к правилу Уоллеса добавляется принцип эколого-географического максимума (стабильности числа) видов:

число видов в составе географических зон и их биоценозов - относительно постоянно и регулируется вещественно-энергетическими процессами; это число всегда стремится к необходимому и достаточному максимуму.

Дублирование - один из природных механизмов поддержания надежности биоценозов. Это наиболее мобильный способ их адаптации. При этом возможны и генетические изменения в популяциях типа усиления хищнических наклонностей у крысы в приведенном ранее для Сахалина примере. Также возможно межвидовое и внутривидовое дублирование, а в сельском хозяйстве даже межсортовое. Общий «смысл» дублирования остается тем же: максимально полно провести и использовать поток энергии, стабилизировать биоценоз в меняющихся условиях существования.

Это свойство было подмечено А. А. Еленкиным (1921), определившим принцип подвижного равновесия: биотическое сообщество сохраняется как единое целое вопреки регулярным колебаниям среды его существования, но при воздействии необычных факторов структурно изменяется с переносом «точки опоры» на другие растительные компоненты (группы растений).

Если необычные, нерегулярные факторы оказывают многолетнее воздействие, то сообщество формирует иную структуру. Однако, как правило, в биоценозе сохраняются элементы дублирования в виде очень большого числа видов, которые могут быть мобилизованы в случае новых резких изменений среды.

Балансовый подход был уточнен Г. Реммертом (1978), сформулировавшим принцип продукционной оптимизации:

отношение между первичной и вторичной продукцией (между продуцентами и консументами) соответствует принципу оптимизации - «рентабельности» биопродукции.

Как правило, растения и другие продуценты дают биомассу достаточную, но не излишнюю для потребления всем биотическим сообществом (с эволюционно определенным запасом, который обеспечивает надежность системы и обычно в 100 раз превышает потребление в биоценозах суши). При относительном «перепроизводстве» органического вещества биоценоз становится «нерентабельным» и возникают предпосылки для массового размножения отдельных видов. После периода автоколебаний соотношение «популяция--потребление» уравновешивается, биоценоз стабилизируется, балансируются отношения между трофическими уровнями.

Именно как результат экологического дублирования, сдвига в подвижном равновесии и снижения «рентабельности» биоценоза возникают явления массового размножения нежелательных для хозяйства организмов. Монокультура в сельском хозяйстве, однопородные и одновозрастные леса «с позиций природы» чрезвычайно мало рентабельны, неравновесны и потому «требуют исправления» массовыми организмами.

Для хозяйственной деятельности особенно велико значение правила монокультуры Ю. Одума:

эксплуатируемые для нужд человека экосистемы (биоценозы), представленные одним видом, равно как и системы монокультур (например, сельскохозяйственные монокультуры), неустойчивы по своей природе.

Пагубность монокультур «учтена» природой. Более того, ею выработана стратегия сохранения гомеостаза на основе поддержания разнообразия и взаимозависимости членов биоценоза. Один из путей реализации такой стратегии отражает принцип П. Эрлиха и П. Равена или теории сопряженной эволюции, называемой также принципом коэволюции:

случайное функциональное изменение жертв (потребляемого растения) ведет к закономерному изменению свойств хищников (потребителей), что в свою очередь стимулирует разнообразие как первых, так и вторых.

Все перечисленные закономерности саморегуляции биоценозов обобщены Н. Ф. Реймерсом в виде принципа стабильности:

любая относительно замкнутая биосистема с проходящим через нее потоком энергии в ходе саморегуляции развивается в сторону устойчивого состояния.

Им же сформулировано и обобщающее правило биоценотической надежности:

надежность биоценоза зависит от его энергетической эффективности в данных условиях среды и возможностей структурно-функциональной перестройки в ответ на изменение внешних воздействий (материала для дублирования, межвидового и внутривидового, поддержания продукционной «рентабельности» и т. п.).

Вопрос 4. Энергетика экосистемы. Описать процесс передачи энергии в биосфере. Закономерности перехода энергии вместе с пищей (формула энергии потребленной пищи). Как проявляется первое и второе начало термодинамики применительно к живому организму. Дайте определение термодинамического равновесия. Дать определение энтропия и негэнтропия.

Энергетика экосистем.

Жизнь, возникнув на Земле, вот уже на протяжении миллиардов лет находится в постоянном развитии. Это происходит благодаря тому, что элементы живого вещества, поступающие из окружающей среды, пройдя через ряд организмов, снова возвращаются во внешнюю среду, а затем опять включаются в состав живого вещества. Таким образом, каждый элемент используется живой материей многократно. Именно круговоротом веществ и обусловлено неограниченное временем существование и постоянное развитие и совершенствование жизни на Земле. Этот так называемый биогенный круговорот веществ -- важнейшая функция любого биогеоценоза. Его характер определяют изменения массы живых организмов (биомассы), структуры биогеоценоза, химизма среды. Однако биогенный круговорот веществ не следует понимать в абсолютном смысле. Как бы там ни было, эти вещества, переходя с одного трофического уровня на другой, высвобождаясь и вновь включаясь в состав живого вещества, частично исключаются из круговорота. В результате на Земле происходит накопление органических соединений в виде залежей полезных ископаемых (торф, уголь, нефть, газ, горючие сланцы). Но все это не отвергает общего правила. Существенно биомасса на Земле не накапливается, а удерживается на каком-то определенном уровне, поскольку она постоянно разрушается и вновь созидается из одного и того же строительного материала, т. е. в ее пределах протекает беспрерывный круговорот веществ.

  • ? Биогенный круговорот веществ принял определенный характер с появлением зеленых растений, осуществляющих процессы фотосинтеза. Рассмотрим это на примере круговорота кислорода -- продукта фотосинтеза растений. Практически весь молекулярный кислород земной атмосферы возник и поддерживается на определенном уровне благодаря деятельности зеленых растений. В большом количестве он расходуется организмами в процессе дыхания. Но, кроме того, обладая высокой химической активностью, кислород непрерывно вступает в соединения почти со всеми элементами земной коры. Если бы зеленые растения не выделяли такого огромного количества кислорода, он бы в конце концов полностью исчез из атмосферы, и тогда преобразился бы весь облик Земли: исчезли бы почти все организмы, прекратились бы все окислительные процессы -- планета наша стала бы безжизненной. Однако это ей не угрожает именно потому, что в природе происходит нескончаемый круговорот веществ. Подсчитано, что весь кислород, содержащийся в атмосфере, оборачивается через организмы (связываясь при дыхании и высвобождаясь при фотосинтезе) за 2000 лет, углекислота атмосферы совершает круговорот в обратном направлении за 300 лет, а все воды на Земле разлагаются и воссоздаются путем фотосинтеза и дыхания за 2 000 000 лет.
  • ? Однако для столь грандиозного биологического круговорота веществ необходима энергия. Источником ее является солнечная радиация, аккумулируемая зелеными растениями-автотрофами. Солнечная энергия также регулярно циркулирует в биогеоценозе. Но в отличие от круговорота веществ, который протекает по замкнутому кругу, переходя в цепях питания с одного трофического уровня на другой, энергия постоянно расходуется. До 30 % ее рассеивается в атмосфере или отражается облаками и поверхностью Земли, до 20 % поглощается в верхних слоях атмосферы (водяные пары, капельки воды, пылевые частицы), приблизительно 50 % достигает суши и поверхности океана и поглощается в форме теплоты. Лишь ничтожная часть, всего около 0,1--0,2 % энергии, получаемой Землей от Солнца, улавливается зелеными растениями и обеспечивает весь биологический круговорот веществ в биосфере.

Более половины энергии, связанной при фотосинтезе, тут же расходуется на дыхание растений, а остальная поступает в пищевые цепи.

Суммарно только около 1 % лучистой энергии Солнца, которая падает на растение, превращается в потенциальную энергию химических связей синтезированных органических веществ. Более половины этой энергии расходуется на жизнь самих растений, а остальная поступает в пищевые цепи и может быть использована гетеротрофными организмами при питании. Когда животное съедает растение, большая часть энергии, которая содержится в пище, используется на различные процессы жизнедеятельности, превращаясь при этом в теплоту и рассеиваясь в пространстве. Только 5--20 % энергии пищи переходит во вновь созданное живое вещество тела животного. Если растительноядное животное съедается хищником, то вновь теряется большая часть заключенной в пище энергии. В результате таких огромных потерь полезной энергии цепи питания не могут быть очень длинными.

Таким образом, энергия Солнца, утилизированная зелеными растениями, превращается в потенциальную энергию химических связей органических соединений, из которых строится тело самих растений. В организме растительноядного животного эти органические вещества окисляются с выделением такого количества энергии, которое было затрачено на их синтез растением. Часть ее используется для жизни животного, а остальная, согласно второму закону термодинамики (переход энергии из одной формы в другую сопровождается снижением количества полезной энергии), превращается в теплоту и рассеивается в пространстве, т.е. уходит из биоценоза (энтропия).

Поток энергии в экосистеме может быть проиллюстрирован схемой простой цепи питания Солнечная энергия, полученная растением, лишь частично используется в процессе фотосинтеза углеводов.

Поток энергии через три уровня простой пищевой цепи (по П. Дювиньо, 1973)

Фиксированная в углеводах энергия представляет собой валовую продукцию биогеоценоза (Пв). Углеводы идут на построение протоплазмы и рост растений, причем часть их энергии затрачивается на дыхание (Д1). В результате чистая продукция (Пч) определяется по формуле

Пч = Пв - Д1.

Таким образом, поток энергии, проходящий через уровень продуцентов, т.е. валовую продукцию, можно представить так: Пв = Пч + Д1

Определенный объем созданных продуцентами веществ служит кормом (К) фитофагов, остальные в конце концов отмирают и перерабатываются редуцентами (Н). Корм, ассимилированный фитофагами (А2), лишь частично используется для образования их биомассы (П2).

В основном он растрачивается на обеспечение энергией процессов дыхания (Д2) и в некоторой степени выводится из организма в виде выделений и экскрементов (Э). Поток энергии, проходящий через второй трофический уровень, выражается следующим образом:

А2 = П2 + Д2.

Консументы второго порядка (хищники) не истребляют всю биомассу своих жертв, но и из того количества ее, которое они уничтожают, лишь часть используется на создание биомассы их собственного трофического уровня. Остальная же часть в основном затрачивается на энергию дыхания, а также выделяется с экскретами и экскрементами. Поток энергии, проходящий через уровень консументов второго порядка (плотоядные), выражается формулой:

Аз = Пз + Дз.

Анализируемая схема наглядно показывает, что поток энергии, который выражается количеством ассимилированного по цепи питания вещества, на каждом трофическом уровне уменьшается, т.е. Пч>П2>Пз и т. д.

Таким образом, поскольку определенное количество вещества может быть использовано каждым биоценозом неоднократно, а порция энергии -- лишь один раз, в экосистеме осуществляется не «круговорот веществ и энергии», как иногда указывается, а каскадный перенос (поток) энергии и круговорот веществ, т.е. применение понятия «круговорот» правомерно только по отношению к веществам.

Поток энергии в биосфере (по Ф. Рамаду, 1981)

Этот процесс протекает в природе с определенной скоростью. Поэтому биологическую продуктивность можно выразить продукцией за сезон, за год, за несколько пет или за любую другую единицу времени. Для наземных и донных организмов она определяется количеством биомассы на единицу площади, а для планктонных и почвенных -- на единицу объема.

Следовательно, биологическая продуктивность представляет собой количество воспроизведенной биомассы на 1 м 2 площади (или на 1 м 3 объема) в единицу времени и выражается чаще всего в граммах углерода или сухого органического вещества. Биологическую продуктивность нельзя смешивать с биомассой. Допустим, за год планктонные водоросли на единицу площади синтезируют столько же органического вещества, сколько и высокопродуктивные леса, однако биомасса последних в сотни тысяч раз больше.

Биомасса того или иного биоценоза не дает четкого представления о его продуктивности. Это связано с тем, что скорость образования биомассы (продуктивность) в разных биоценозах неодинакова. Поэтому биоценозы различаются не только биомассой, но и продуктивностью, т. е. скоростью создания определенного количества биомассы. Луговые степи дают больший годовой прирост биомассы, чем хвойные леса. При средней фитомассе 23 т/га годовая продукция их (оставляет 10 т/га, тогда как у хвойных лесов при фитомассе 200 т/га она равна 6 т/га. Популяции мелких млекопитающих по сравнению с крупными обладают большой скоростью роста и размножения и дают более высокую продукцию при равной биомассе.

Таким образом, чтобы оценить значение вида (группы видов) для круговорота веществ и в отношении его биологической продуктивности в биоценозе или в биогеоценозе в целом, нужно знать не только его биомассу, но и относительную скорость прироста или время ее полного возобновления.

Продукция каждой популяции за определенное время представляет собой сумму прироста всех особей, включая отделившиеся от организма образования и устраненные (элиминация) по разным причинам особи (смерть, миграция).

В том случае, когда все особи доживают до конца изучаемого периода, продукция равна приросту биомассы. В природе это исключено, и продукция популяции обычно рассчитывается по формуле:

Р = (В2 - В1) + Е,

где Р -- продукция; В1 и В2 -- соответственно начальная и конечная биомасса; Е -- элиминация.

Это так называемая чистая продукция. Валовая продукция включает в себя прирост (чистая продукция) и затраты на энергетический обмен.

Необходимо различать первичную продукцию, т.е. продукцию автотрофных организмов, и первичную продуктивность, т.е. скорость, с которой автотрофные организмы (продуценты) в процессе фотосинтеза связывают энергию и запасают ее в форме органического вещества.

Подсчитано, что солнечная энергия, достигающая поверхности Земли в течение года, исчисляется в 5-10 20 ккал (21 *10 20 кДж). Это составляет 9 млрд. ккал (37,8-10 9 кДж) на гектар. Один гектар леса в средних широтах продуцирует до 6 т древесины и 4 т листьев, сжигание которых дает 46 млн. ккал (193,2-10 6 кДж). Значит, эффективность первичной продуктивности леса, т. е. эффективность использования растениями солнечной энергии для создания органического вещества, составляет всего около 0,5% (46х100:9). Конечно, цифры эти чрезвычайно относительны, поскольку эффективность первичной продуктивности зависит от возраста леса, количества деревьев, погодных условий и многих других факторов. Но тем не менее они дают представление о коэффициенте полезного действия биоценоза.

Консументы образуют свою биомассу. Для обозначения биомассы и скорости ее образования консументами применяются термины «вторичная продукция», т. е. продукция гетеротрофных организмов, и «вторичная продуктивность», т. е. скорость образования продукции гетеротрофами. Как уже отмечалось, поток энергии от продуцентов к консументам сопровождается потерями ее. Дело в том, что значительная часть съеденного гетеротрофами корма расходуется на теплопродукцию, на выработку энергии, необходимой для их жизнедеятельности, и лишь небольшое количество его (1,3--2%) используется на создание вторичной продукции. Например, для получения 1 кг говядины требуется от 70 до 90 кг свежей травы.

При этом необходимо учитывать, что все виды, дающие вторичную продукцию, возникают на основе утилизации вещества и энергии первичной продукции. Но так как при переходе с одного трофического уровня на другой энергия частично затрачивается на нужды энергетического обмена и рассеивается, то продукция каждого последующего трофического уровня меньше продукции предыдущего. Например. продукция (ее выход) фитофагов всегда больше, чем у живущих за их счет хищников.

Большое значение в механизме биологического продуцирования имеют гетеротрофные организмы, утилизирующие поступающее со всех трофических уровней мертвое органическое вещество, частично минерализуя его, частично превращая в вещество микробных тел. Последнее служит важным источником питания многих водных и почвенных животных.

Кроме первичной и вторичной продукции биоценозов, различают промежуточную и конечную продукции. Промежуточная продукция отличается тем, что после потребления другими членами биогеоценоза возвращается в круговорот веществ этой же системы. Конечная продукция исключается из данного биогеоценоза, т. е. выводится за его пределы. Это, к примеру, продукция, получаемая человеком в процессе возделывания сельскохозяйственных культур, разведения домашних животных, охоты, промысла и т. д.

Применение первого начала термодинамики к живому организму

В отличие от тепловых машин, живые организмы производят A не за счет тепловой энергии, а за счет использования химической энергии пищевых продуктов, усвоенных ими. В этой связи уравнение, согласно которому изменение U системы равно ее обмену энергии с окружающей средой, имеет вид:

ДU = Wпищи - Q - A,

Wпищи = ДU + Q + A

Организм животных имеет постоянную температуру, и химический состав его в среднем не изменяется, поэтому такого организма. Следовательно, изменение ДU=0. Тогда данное уравнение имеет вид:

Wпищи = Q + A

Поскольку существует множество видов работ и обмена тепла с окружающей средой, то уравнение можно представить:

Первое начало термодинамики применительно к живым организмам.

Следует заметить, что первичным источником энергии служит Солнце. Мощность солнечного излучения примерно составляет 1026 Вт, но только небольшая ее часть, примерно 2х10 17 Вт достигает поверхности Земли, а из этой части, 0,02 % поглощается зелеными растениями и запасается ими в процессе фотосинтеза. Следовательно, поток энергии, извлекаемый зелеными растениями из солнечного света, имеет порядка 4х10 13 Вт. За счет этой энергии работают все тепловые машины и осуществляются все процессы жизнедеятельности.

Однако, способы преобразования в работу солнечной энергии, аккумулированной зелеными растениями в форме химической энергии, в принципе не одинаковы в тепловых машинах и биологических системах. Различия термодинамических процессов можно рассмотреть следующей схемой:

В тепловой машине:

В биологической системе:

Как уже отмечалось, источником G для всех живых существ служит Солнце. Земные растения (аутотрофы) за счет фотосинтеза, создают в тече-ние года примерно 1010 тонн питательных веществ. Гетеротрофы сами не могут питаться светом, они получают G, поедая друг друга или питаясь растениями. Пищеварение обеспечивается поступлением в клетки продуктов гидролиза пищи, то есть, углеводов, белков, жиров, в которых заключена G солнечного света.

Основным способом использования G питательных веществ организ-мом является их биологическое окисление. Оно происходит главным образом на внутренней мембране митохондрий, где сосредоточены ферменты, катализирующие биологическое окисление (клеточное дыхание). Поэтому митохондрии часто называют энергетическим цехом клетки.

Энергия, извлекаемая из химических связей питательных веществ при их биологическом окислении, в некоторых случаях может быть непосредственно использована для осуществления жизнедеятельности, но основная ее часть идет на синтез так называемых макроэнергетических соединений, среди которых наиболее важным является АТФ.

Энергия, запасенная в макроэргах, используется организмом для совершения различных видов работ, причем механическая (мышечная работа) не является самой энергоемкой. В жизни человека огромные затраты G энергии идут на синтез сложных биомолекул. Так, для синтеза одного моля белка, требуется от 12000 до 200 тыс. кДж G. "В сборке" одной молекулы белка участвуют от 1000 до 16 тыс. молекул АТФ (КПД примерно 40 %) Для синтеза молекулы РНК необходимо примерно 6 тыс. молекул АТФ, еще большей энергии требуется для образования ДНК, так, на создание одной молекулы ДНК тратится 12х10 7 молекул АТФ. Однако, количество синтезирующихся молекул белка значительно больше, чем нуклеиновых кислот, в силу разнообразия его функций и постоянного быстрого обновления. В результате, именно синтез белка в организме наиболее энергоемок, по сравнению с другими биосинтетическими процессами, так, в течение каждого часа жизни у млекопитающих белок клеток обновляется примерно на 1%. А белки-ферменты на 10%. У человека, массой 70 кг, ежечасно обновляется примерно 100 грамм белка.

Другой важной "статьей" расхода G в организме является поддержание физико-химических градиентов на клеточных мембранах. Внутри живой клетки концентрация ионов ивещества, отличается от межклеточной среды, то есть, на клеточной мембране существует градиент концентрации. Различие концентрации ионов и молекул вызываются появлением и других градиентов: остматического, электрического, фильтрационного и т.д.

Наличие градиентов вызывает непрерывный перенос вещества через клетки мембран (пассивный транспорт). Пассивный транспорт должен был бы уменьшить величину градиентов, то есть, выровнять концентрацию и другие физико-химические параметры. Однако, в нормальных условиях функционирования клетки, градиенты на мембране стабильно поддержива-ются на определенном уровне, что обусловлено способностью биологической системы переносить вещества против градиентов. Такой транспорт называется активным транспортом. Активный транспорт нуждается в затратах G на него, которое в большинстве случаев черпается из АТФ следовательно активный транспорт представляет собой одну из форм работы биологической системы с КПД примерно 20-25%. КПД мышечного сокращения организма не превышает 20%.

Второе начало термодинамики

Второе начало термодинамики является законом, в соответствии с которым макроскопические процессы, протекающие с конечной скоростью, необратимы.

В отличие от идеальных (без потерь) механических или электродинамических обратимых процессов, реальные процессы, связанные с теплообменом при конечной разности температур (т. е. текущие с конечной скоростью), сопровождаются разнообразными потерями: на трение, диффузию газов, расширением газов в пустоту, выделением джоулевой теплоты и т.д.

Поэтому эти процессы необратимы, то есть могут самопроизвольно протекать только в одном направлении.

Второе начало термодинамики возникло исторически при анализе работы тепловых машин.

Само название «Второе начало термодинамики» и первая его формулировка (1850 г.) принадлежат Р. Клаузиусу: «…невозможен процесс, при котором теплота переходила бы самопроизвольно от тел более холодных к телам более нагретым».

Причем такой процесс невозможен в принципе: ни путем прямого перехода теплоты от более холодных тел к более теплым, ни с помощью каких-либо устройств без использования каких-либо других процессов.

В 1851 году английский физик У. Томсон дал другую формулировку второго начала термодинамики: «В природе невозможны процессы, единственным следствием которых был бы подъем груза, произведенный за счет охлаждения теплового резервуара».

Как видно, обе приведённые формулировки второго начала термодинамики практически одинаковы.

Отсюда следует невозможность реализации двигателя 2-го рода, т.е. двигателя без потерь энергии на трение и другие сопутствующие потери.

Кроме того, отсюда также следует, что все реальные процессы, происходящие в материальном мире в открытых системах, необратимы.

В современной термодинамике второе начало термодинамики изолированных систем формулируется единым и самым общим образом как закон возрастания особой функции состояния системы, которую Клаузиус назвал энтропией (S ).

Физический смысл энтропии состоит в том, что в случае, когда материальная система находится в полном термодинамическом равновесии, элементарные частицы, из которых состоит эта система, находятся в неуправляемом состоянии и совершают различные случайные хаотические движения.

В принципе можно определить общее число этих всевозможных состояний.

Параметр, который характеризует общее число этих состояний, и есть энтропия.

Рассмотрим это на простом примере.

Пусть изолированная система состоит из двух тел «1» и «2», обладающих неодинаковой температурой T 1 > T 2 . Тело «1» отдает некоторое количество тепла Q , а тело «2» его получает. При этом идет тепловой поток от тела «1» к телу «2». По мере уравнивания температур увеличивается суммарное количество элементарных частиц тел «1» и «2», находящихся в тепловом равновесии.

По мере увеличения этого количества частиц увеличивается и энтропия. И как только наступит полное тепловое равновесие тел «1» и «2», энтропия достигнет своего максимального значения. Таким образом, в замкнутой системе энтропия S при любом реальном процессе либо возрастает, либо остаётся неизменной, т. е. изменение энтропии dS і 0. Знак равенства в этой формуле имеет место только для обратимых процессов. В состоянии равновесия, когда энтропия замкнутой системы достигает максимума, никакие макроскопические процессы в такой системе, согласно второму началу термодинамики, невозможны.

Отсюда следует, что энтропия - физическая величина, количественно характеризующая особенности молекулярного строения системы, от которых зависят энергетические преобразования в ней.

Связь энтропии с молекулярным строением системы первым объяснил Л. Больцман в 1887 году. Он установил статистический смысл энтропии (формула 1.6). Согласно Больцману (высокая упорядоченность имеет относительно низкую вероятность)

S = k lnP ,

где k -- постоянная Больцмана, P - статистический вес.

k = 1.37·10 -23 Дж/К.

Статистический вес Р пропорционален числу возможных микроскопических состояний элементов макроскопической системы (например, различных распределений значений координат и импульсов молекул газа, отвечающих определённому значению энергии, давления и других термодинамических параметров газа), т. е. характеризует возможное несоответствие микроскопического описания макросостояния.

Для изолированной системы термодинамическая вероятность W данного макросостояния пропорциональна его статистическому весу и определяется энтропией системы:

W ~ exp (S /k ).

Таким образом, закон возрастания энтропии имеет статистически-вероятностный характер и выражает постоянную тенденцию системы к переходу в более вероятное состояние. Отсюда следует, что наиболее вероятным состоянием, достижимым для системы, является такое, в котором события, происходящие в системе одновременно, статистически взаимно компенсируются.

Максимально вероятным состоянием макросистемы является состояние равновесия, которого она может в принципе достичь за достаточно большой промежуток времени. Как было указано выше, энтропия является величиной аддитивной, то есть она пропорциональна числу частиц в системе. Поэтому для систем с большим числом частиц даже самое ничтожное относительное изменение энтропии, приходящейся на одну частицу, существенно меняет её абсолютную величину; изменение же энтропии, стоящей в показателе экспоненты в уравнении (1.7), приводит к изменению вероятности данного макросостояния W в огромное число раз.

Именно этот факт является причиной того, что для системы с большим числом частиц следствия второго начала термодинамики практически имеют не вероятностный, а достоверный характер. Крайне маловероятные процессы, сопровождающиеся сколько-нибудь заметным уменьшением энтропии, требуют столь огромных времён ожидания, что их реализация является практически невозможной. В то же время малые части системы, содержащие небольшое число частиц, испытывают непрерывные флуктуации, сопровождающиеся лишь небольшим абсолютным изменением энтропии. Средние значения частоты и размеров этих флуктуаций являются таким же достоверным следствием статистической термодинамики, как и само второе начало термодинамики.

Буквальное применение второго начала термодинамики ко Вселенной как целому, приведшее Клаузиуса к неправильному выводу о неизбежности «тепловой смерти Вселенной», является неправомерным, так как в природе в принципе не может существовать абсолютно изолированных систем. Как будет показано далее, в разделе 1.4, процессы, протекающие в открытых системах, подчиняются другим законам и имеют другие свойства.

Равновесие термодинамическое

Равновесие термодинамическое, состояние термодинамической системы, в которое она самопроизвольно приходит через достаточно большой промежуток времени в условиях изоляции от окружающей среды, после чего параметры состояния системы уже не меняются со временем. Изоляция не исключает возможности определённого типа контактов со средой (например, теплового контакта с термостатом , обмена веществом и др.). Процесс перехода системы в равновесное состояние называемое релаксацией . При Р. т. в системе прекращаются все необратимые процессы , связанные с диссипацией энергии , -- теплопроводность, диффузия, химические реакции и т.д. Равновесное состояние системы определяется значениями её внешних параметров (объёма, напряжённости электрического или магнитного поля и др.), а также значением температуры . Строго говоря, параметры состояния равновесной системы не являются абсолютно фиксированными -- в микрообъёмах они могут испытывать малые колебания около своих средних значений (флуктуации ).

Изоляция системы осуществляется в общем случае при помощи неподвижных стенок, непроницаемых для вещества. В случае, когда изолирующие систему неподвижные стенки практически не теплопроводны (например, в Дьюара сосудах ),имеет место адиабатическая изоляция, при которой энергия системы остаётся неизменной. При теплопроводящих (диатермических) стенках между системой и внешней средой, пока не установилось равновесие, возможен теплообмен . При длительном тепловом контакте такой системы с внешней средой, обладающей очень большой теплоёмкостью (термостатом), температуры системы и среды выравниваются и наступает Р. т. При полупроницаемых для вещества стенках Р. т. наступает в том случае, если в результате обмена веществом между системой и внешней средой выравниваются химические потенциалы среды и системы.

Одним из условий Р. т. является механическое равновесие, при котором невозможны никакие макроскопические движения частей системы, но поступательное движение и вращение системы как целого допустимы При отсутствии внешних полей и вращения системы условием её механического равновесия является постоянство давления во всём объёме системы. Другие необходимые условия Р. т. -- постоянство температуры и химического потенциала в объёме системы. Достаточные условия Р. т. (условия устойчивости) могут быть получены из второго начала термодинамики (принципа максимальной энтропии );к ним, например, относятся: возрастание давления при уменьшении объёма (при постоянной температуре) и положительное значение теплоёмкости при постоянном давлении. В общем случае система находится в Р. т. тогда, когда термодинамический потенциал системы, соответствующий независимым в условиях опыта переменным, минимален. Например, при заданных объёме и температуре должна быть минимальна свободная энергия , а при заданных давлении и температуре -- термодинамический потенциал Гиббса (см. Потенциалы термодинамические ).

Энтропия

Энтропия -- это сокращение доступной энергии вещества в результате передачи энергии. Первый закон термодинамики гласит, что энергию невозможно создать или уничтожить. Следовательно, количество энергии во вселенной всегда такое же, как было и при ее создании. Второй закон термодинамики гласит, что коэффициент полезного действия ни одного реального (необратимого) процесса не может быть 100% при преобразовании энергии в работу.

где ДS -- изменение энтропии, ДQ -- изменение теплоты , T -- абсолютная термодинамическая температура.

Следовательно, количество энергии для преобразования в работу или теплоту непрерывно уменьшается со временем, так как теплота спонтанно переходит из более теплой области к более холодной. Другими словами, количество энергии во вселенной остается постоянным, но ее способность использования для того, чтобы проделать полезную работу, уменьшается при каждой теплопередаче и выполнении работы. Энтропия используется для измерения уменьшения пригодности энергии в результате процесса.

Термин «энтропия» используется для описания количества хаотичности в любой системе. В термодинамике энтропия указывает расположение молекул вещества или организацию энергии системы. Системы или вещества с высоким значением энтропии более дезорганизованы, чем с низким. Например, у молекул в твердых телах определенная кристаллическая структура, благодаря чему они лучше организованы, и у них ниже значение энтропии. При сообщении телу теплоты и изменении его состояния на жидкое увеличивается уровень его энтропии, так как кинетическая энергия увеличивает колебания молекул, в результате чего их положение становится случайным.

Энтропия увеличивается, когда жидкость изменяет состояние на газообразное при потреблении большего количества тепловой энергии. Такая же аналогия существует при описании порядка источников энергии. Если энергия заключена в ограниченном источнике, у нее низкое значение энтропии. Если она распределена среди большого количества молекул, ее интенсивность уменьшается, увеличивая энтропию. Например, если 1,05 кДж энергии у 1000 молекул передать 1 миллиону молекул, интенсивность энергии уменьшится, а энтропия возрастет. Энтропию трудно понять, так как это абстрактное понятие беспорядка энергии во вселенной. Этот беспорядок связан с уменьшением пригодности энергии для преобразования в работу. Энергия всегда становится недоступной, если процессы уменьшают ее интенсивность, распространяя ее по вселенной. Если энергия распределена среди бесчисленных молекул вселенной, разница температур самых холодных и самых теплых участков уменьшается. Если разница температур уменьшается, тепловая энергия, которую можно преобразовать в полезную работу, также уменьшается. Следовательно, любой процесс, который производит увеличение энтропии, уменьшает энергию для будущих процессов. В конечном счете наступит момент, когда энтропия вселенной приблизится к максимальному значению, и преобразование теплоты в работу станет невозможным.

Все процессы теплопередачи в конечном счете увеличивают энтропию вселенной. Хотя энтропия двух процессов может показать математическое уменьшение, как в процессе конденсации или переохлаждения энтропия вселенной все равно увеличивается, так как во всех процессах передачи теплоты от более холодных участков более теплым выполняется работа. Данная работа больше увеличивает энтропию, чем уменьшает при теплопередаче жидкости, когда она охлаждается или конденсируется.

Абсолютная энтропия (S) вещества или процесса -- это изменение доступной энергии при теплопередаче при данной температуре (Btu/R, Дж/К). Математически энтропия равняется теплопередаче, деленной на абсолютную температуру, при которой происходит процесс. Следовательно, процессы передачи большого количества теплоты больше увеличивают энтропию. Также изменения энтропии увеличатся при передаче теплоты при низкой температуре. Так как абсолютная энтропия касается пригодности всей энергии вселенной, температуру обычно измеряют в абсолютных единицах (R, К).

Удельную энтропию (S) измеряют относительно единицы массы вещества. Температурные единицы, которые используются при вычислении разниц энтропии состояний, часто приводятся с температурными единицами в градусах по Фаренгейту или Цельсию. Так как различия в градусах между шкалами Фаренгейта и Ренкина или Цельсия и Кельвина равные, решение в таких уравнениях будет правильным независимо от того, выражена энтропия в абсолютных или обычных единицах. У энтропии такая же данная температура, как и данная энтальпия определенного вещества.

Негэнтропия

"отрицательная энтропия", энтропия, зачем-то умноженная на минус один, скорее всего, для того, чтобы влегкую "изобрести сущность"; энтропия - (от греч. entropia - превращение) в термодинамике - функция, приращение которой равно отношению количества тепла, полученного системой, к температуре, обладает свойствами потенциала, т.е. зависит от начального и конечного состояния системы и не зависит от траектории; в статфизике величина, пропорциональная логарифму вероятности нахождения системы в определенном состоянии, эти два определения связаны; в обыденной речи неспособность к действию, мера хаоса, дезорганизации; понятия энтропии и негэнтропии являются также распространенными заклинаниями, произносимыми обычно при обсуждении вопроса от сущности жизни, важности экологии, судьбе цивилизации и т.п., наподобие понятий "поле", "смысл", "эволюция".